雍菜对受灭多威污染养殖水体的净化及对鱼类生长的影响

王钰钦, James P. Mulbah, 孟顺龙, 郑尧, 陈家长, 吴伟

中国农学通报. 2020, 36(3): 147-153

PDF(1205 KB)
PDF(1205 KB)
中国农学通报 ›› 2020, Vol. 36 ›› Issue (3) : 147-153. DOI: 10.11924/j.issn.1000-6850.casb20190600303
水产·渔业

雍菜对受灭多威污染养殖水体的净化及对鱼类生长的影响

作者信息 +

Ipomoea aquatica: Purification of Aquaculture Water Contaminated by Methomyl and Effect on Fish Growth

Author information +
History +

摘要

灭多威属高毒农药,其可经地表淋溶等途径污染养殖水体。为了研究雍菜对水体中灭多威及其他水质指标的净化效能以及对罗非鱼生长的影响,以灭多威、罗非鱼、雍菜和室内养殖系统为试材,根据《水和废水监测分析方法》中的方法测得水质指标数据,以液相色谱-质谱联用仪(LC-MS)测得水体中灭多威浓度,以试剂盒测定谷胱甘肽(GSH)含量(DTNB法)、超氧化物歧化酶(SOD)活性(WST-1法)、过氧化氢酶(CAT)活性(紫外法)。研究结果表明,罗非鱼的生长速度随着水体中灭多威浓度的上升而降低。受灭多威污染可致罗非鱼肝脏氧化压力增大,SOD、CAT和GSH的活性发生变化。雍菜可通过机体吸收有效降低养殖水体中灭多威的含量,对受灭多威污染水体中TN、NH4 +-N、NO3 --N、NO2 --N等具一定的净化作用,并可减轻罗非鱼肝脏的氧化应激。研究显示,水体种植雍菜可有效减轻灭多威对水体的污染,保证鱼类的生长。

Abstract

Methomyl is a highly toxic pesticide, which can contaminate aquaculture water by means of surface leaching. To study the purification efficiency of water spinach on methomyl in the water body and other water quality indexes and investigate the impact of water spinach on tilapia, we took methomyl, tilapia, water spinach and indoor cultivation system as test materials to measure the water quality indexes according to the Water and Wastewater Monitoring Analysis Methods. The methomyl concentration in the water body was measured by the Liquid Chromatograph Mass Spectrometer (LC-MS), and the glutathione (GSH) content (the DTNB method), superoxide dismutase (SOD) content (WST-1 method) and catalase (CAT) content (the Ultraviolet Spectroscopy) were measured using the assay kit. The results showed that the growth rate of tilapia decreased with the increase of methomyl concentration in water. Methomyl contamination led to increasing the oxidative pressure of the tilapia liver, and caused the changes of SOD, CAT and GSH. Water spinach could effectively reduce the content of methomyl in the aquaculture water through body absorption, it purified TN, NH4 +-N, NO3 --N and NO2 --N in the water contaminated by methomyl to a certain extent and reduced the oxidative stress of the tilapia liver. The study reveals that water spinach grown in water can effectively reduce the pollution of methomyl and ensure fish growth.

关键词

雍菜 / 灭多威 / 养殖水体 / 净化 / 吉富罗非鱼

Key words

water spinach / methomyl / aquatic water / purification / genetically improved farmed tilapia

引用本文

导出引用
王钰钦 , James P. Mulbah , 孟顺龙 , 郑尧 , 陈家长 , 吴伟. 雍菜对受灭多威污染养殖水体的净化及对鱼类生长的影响. 中国农学通报. 2020, 36(3): 147-153 https://doi.org/10.11924/j.issn.1000-6850.casb20190600303
Wang Yuqin , James P. Mulbah , Meng Shunlong , Zheng Yao , Chen Jiazhang , Wu Wei. Ipomoea aquatica: Purification of Aquaculture Water Contaminated by Methomyl and Effect on Fish Growth. Chinese Agricultural Science Bulletin. 2020, 36(3): 147-153 https://doi.org/10.11924/j.issn.1000-6850.casb20190600303

0 引言

中国是农药的使用大国,据联合国粮农组织统计,2015年中国的农药施用量为13.06 kg/hm²,远高于挪威(0.7 kg/hm²)等国[1]。灭多威(Methomyl)是一种内吸型广谱性氨基甲酸酯类杀虫剂,呈白色晶状体,有轻微的硫磺气味[2],广泛应用于粮食、棉花、蔬菜、水果等作物。由于灭多威使用量大、溶解性较强、半衰期长,导致在部分水体、果蔬、土壤中能检测到残留的灭多威[3]。调查显示沙特阿拉伯地下水中灭多威检出率高达53.3%,最大残留量达0.097 mg/L[4],已经超过了灭多威对经济鱼类的安全浓度(3.86 g罗非鱼,0.043 mg/L)[5]。浙江省多个城市水源地下水中灭多威最高浓度达0.172 µg/L且呈增长趋势,并对鱼类生长、繁殖等生命活动造成显著影响[5,6]。生物机体会因环境中的污染胁迫而产生过量自由基。自由基会攻击细胞膜,生成脂质过氧化物(LPO),最终造成细胞死亡。以吉富罗非鱼(GIFT Oreochromis niloticus)为例,灭多威容易导致其急性死亡,属极高毒农药[7]。生物体在活性氧自由基反应引起的脂质过氧化过程中,存在一套完备的抗氧化系统。该系统包括过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽(GSH)等物质,它们能够通过酶促和非酶促反应,保护细胞免受毒性化学物质的攻击[8,9,10]。研究表明>0.2 µg/L灭多威对其抗氧化系统造成影响[11]
目前,农药污染处理的主要方法有膜分离法、絮凝法、吸附法、混凝沉淀法、湿式氧化法、超声波技术法、焚烧法、催化氧化法、电解法、生物化学法等[12]。这些方法受处理方式和成本所限,能应用于养殖池塘环境的较少,研究适宜池塘养殖水体灭多威净化的方法则显得十分必要。雍菜(Ipomoea aquatica)又名空心菜,在中国作为一种蔬菜被广泛栽培,研究发现浮床种植雍菜常被用于净化污染水体,能有效改善水质[13],可通过根系吸收将污染物移出水体。浮床种植雍菜能有效地吸收、降解受污染的土壤或水体中的重金属、持久性有机污染物以及抗生素类污染物[14]。相比较于其他处理农药的方法,浮床种植雍菜能有效改善水质,且成本低、操作简单。灭多威在通风、日光或较高温度下会迅速分解[15,16],但在水中有较长的半衰期,其在pH 6、7、8的3种水溶液中的水解半衰期分别为54周、38周和20周[5],而在蔬菜中灭多威的半衰期仅为30 h[17]。研究表明灭多威的容许日摄入量(ADI)为20 µg/kg[18]。因此,水上浮床种植雍菜一方面能大量减少农药残留量,蔬菜经短时间处理残留量低于膳食ADI值。
关于浮床种植雍菜降解污染物[14]虽有报道,但结合水产养殖实际、应用浮床种植经济蔬菜降解灭多威的研究较少,本文将通过实验室养殖系统模拟被灭多威污染的吉富罗非鱼养殖池塘,研究在不同灭多威浓度影响下的雍菜-吉富罗非鱼共生系统的水质指标的变化、吉富罗非鱼肝脏酶活性变化和雍菜对养殖系统中灭多威的吸收效果(水体中灭多威浓度变化和雍菜不同部位灭多威含量),以期为减少灭多威对吉富罗非鱼养殖危害的研究提供基础资料,便于展开进一步的研究。

1 材料与方法

1.1 试验设计

本试验开始于2019年3月,在中国水产科学研究院淡水渔业研究中心(江苏无锡山水东路9号)进行。研究采用质量分数大于97%的灭多威原药,购置于上海焦点生物技术有限公司,并使用DMSO助溶剂溶入水中。试验用鱼为吉富罗非鱼,由中国水产科学研究院淡水渔业研究中心科研基地提供。试验用鱼暂养7天后,选择规格为20±2 g/尾的健康吉富罗非鱼,养殖于室内循环流水养殖系统,每个养殖单元体积为100 cm×60 cm×50 cm,每个单元中放入罗非鱼30尾,共计360尾。试验分成4组(A组:控制组,水面10%面积的雍菜+0 µg/L灭多威;B组:水面10%面积的雍菜+2 µg/L灭多威;C组:水面10%面积的雍菜+20 µg/L灭多威;D组:水面10%面积的雍菜+200 µg/L灭多威),每组3个平行。灭多威浓度设置参考Meng等[6]的试验,由于2 µg/L及以上浓度的灭多威会对罗非鱼肝抗氧化系统造成伤害,且200 µg/L灭多威尚未达到罗非鱼致死浓度,将浓度设置为0、2、20、200 µg/L。试验期间保持连续充氧,水温、溶解氧、pH等水质指标符合渔业水质标准。每天换水1/3,计算并补充1/3水中的灭多威,投喂量按罗非鱼养殖标准进行,每隔10天称量一次体重,并对投喂量(3%~5%)做相应调整。

1.2 水体中灭多威及相关指标的分析

在试验开始后的14、28、42、56天采集水样,分析水体中灭多威、总氮(TN)、氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)和硝酸盐氮(NO3--N)的含量。采样时间在10:00左右。灭多威采用Waters XevoTM TQ进行含量测定,并采用Masslynx 4.1进行分析。色谱条件为:色谱柱采用C18柱(2.1 mm × 100 mm,1.7 µm),流动相A为0.1%甲酸水溶液,流动相B为乙腈进行梯度洗脱(按A:B=9:1、1:9、5:5、9:1、9:1分别洗脱2.5、0.5、0.5、0.5、1.5 min),流速为0.3 mL/min,柱温30˚C。其他水质指标按《水和废水监测分析方法》进行,其中TN采用过硫酸钾氧化-紫外分光光度法测定,NH4+-N采用纳氏试剂光度法测定,NO2--N采用N-(1-萘基)-乙二胺光度法测定,NO3--N采用酚二磺酸光度法测定。

1.3 吉富罗非鱼肝脏酶活测定

分别在染毒后的第14、28、42天对雍菜各处理组的罗非鱼进行取样,酶活实验因肝脏较小分别从每个养殖单元抓取6尾鱼以满足取样要求(MS-222麻醉)。测量体长体重后,迅速将罗非鱼处死,立即取出肝胰脏,称重约0.1 g,将肝胰脏与PBS (0.02 mol,pH 7.3) 1:9(w/v)混合,之后立即在4℃下以10000×g离心10 min,分离出上清液在-80℃超低温冰箱中储备备用。肝胰脏中各测定指标包括SOD、CAT、GSH。以上抗氧化因子的检测按照南京建成生物工程研究所提供的试剂盒说明书进行。肝胰脏组织SOD采用WST-1法测定,以在反应体系中SOD抑制率达50%时所对应的酶量为一个活力单位,单位为U/mg prot;CAT含量测定采用紫外法,每毫克组织蛋白每秒钟分解1 µmol的H2O2的量为一个活力单位,单位为U/mg prot;蛋白质含量采用考马斯亮蓝法测定,单位为g/L;T-GSH含量测定采用DTNB法测定。

1.4 雍菜不同部位灭多威含量测定

第14、28、42天采集雍菜叶、根和茎部位,每个部位2.5 g,平皿称重减压烘干添加乙腈采用SPE浓缩柱浓缩,将Na2SO4转移至TPT墨盒(Cleanet TPT cartridge)中对样本进行前处理,用0.05 mL乙腈-甲苯(体积比3:1)对SPE柱进行活化,每次用5 mL乙腈-甲苯溶液洗脱,最终获得25 mL的洗脱液,旋转蒸发干燥,加入1.5 mL乙腈溶解过0.22 µm有机膜过滤进行UPLC-MS分析。标准曲线制作过程中,纯甲醇和空白雍菜样品中制备6种浓度水平(1、5、10、20、50、100 µg/L)的标准储备混合物溶液,分别获得雍菜的线性方程为Y=951.1X+1528.6 (R²=0.9938),Y=921.5X+1208.4 (R²=0.9954)。

1.5 数据分析

试验数据用平均值±标准误差表示,使用SPSS 17.0统计软件在P=0.05的置信水平对抗氧化酶活性进行单因素方差分析(Duncan's test),Microsoft Office、Origin 8.0软件绘图。

2 结果与分析

2.1 水质分析结果

B、C、D组第14天TN相较于A组显著下降,第42天B、C组TN显著下降,第56天C组TN反而显著上升。第14天B、C组NH4+-N显著下降,第28天不同浓度灭多威处理组的NH4+-N显著上升,第42天B组NH4+-N显著下降,第56天D组NH4+-N显著下降。第14天不同浓度灭多威处理组NO3--N显著下降。第14天D组NO2--N显著升高,第42天C、D组NO2--N显著升高(图1)。
图1 在雍菜和不同浓度灭多威处理下的水质参数

Full size|PPT slide

2.2 吉富罗非鱼的生长和肝脏酶活性

表1的数据中可以发现,B、C、D组体重增长低于A组,并且随着灭多威浓度升高,体重增长降低、饲料转化比(FCR)显著增高、比生长速率(SGR)显著降低(表1)。
表1 吉富罗非鱼生长数据
A组(Con) B组(2 µg/L) C组(20 µg/L) D组(200 µg/L)
试验前平均体重/g 5.32±0.06 5.31±0.07 5.09±0.09 5.25±0.1
试验后平均体重/g 33.52±0.35 31.79±1.37 30.11±1.24 28.83±1.08
试验后总体重/g 529.39±9.25 498.67±29.77 491.24±22.37 449.48±28.38
FCR/% 1.06±0.01b 1.13±0.06ab 1.2±0.05ab 1.27±0.06a
SGR/(%/d) 3.06±0.02a 2.97±0.08ab 2.95±0.06ab 2.83±0.08b
B、C、D组在第14天SOD活性相较于A组显著下降,第28天B、C组SOD活性显著升高。第42天B组SOD活性显著升高。第28天B组CAT活性显著升高,第42天灭多威处理CAT活性显著降低,且D组显著低于B、C组。第14天D组GSH显著降低,第28天B、D组显著升高但C组最高,第42天B、C组GSH显著升高(图2)。
图2 在雍菜和不同浓度灭多威处理下的吉富罗非鱼肝脏酶活

Full size|PPT slide

2.3 养殖水体中的灭多威含量

种植雍菜第14天B组水中的灭多威浓度相较于B组初始添加浓度(2 µg/L)显著上升,D组显著下降。第28天D组水中的灭多威浓度相较于第14天显著下降。第42天B、D组水中的灭多威浓度相较于第28天显著上升。第56天不同浓度灭多威处理组的灭多威浓度相较于第42天均显著下降(图3)。
图3 在雍菜和不同浓度灭多威处理下水中灭多威实测浓度

Full size|PPT slide

2.4 雍菜不同部位的灭多威残留

第28天B组雍菜根中的灭多威浓度相较于第14天显著上升;第42天B组雍菜根中的灭多威浓度相较于第28天显著下降,C、D组显著上升。第42天不同浓度灭多威处理组雍菜茎中的灭多威浓度相较于第28天显著上升。第28天C、D组雍菜叶中的灭多威浓度相较于第14天显著上升,第42天C、D组雍菜叶中的灭多威浓度相较于第28天显著上升(图4)。
图4 雍菜不同部位灭多威含量测定

Full size|PPT slide

3 讨论

在本次试验的养殖系统中除NO3--N外的水质指标在14~42天中呈上升趋势。而在42~56天中,除NO3--N外的水质指标基本都呈下降状态,这可能和雍菜吸收了水中的氮素有关(图1)。水中氮素的主要来源为饲料和灭多威。有研究表明灭多威在自然环境中会分解成铵根离子等物质[19],而铵根离子在有氧情况下经硝化细菌作用转化成亚硝酸盐和硝酸盐。本次试验中,为了更好的分析雍菜对受灭多威污染养殖水体的净化,在测试了42天吉富罗非鱼肝脏酶活和雍菜灭多威含量的基础上测试了56天的水质指标和水中灭多威含量。
灭多威是一种环境内分泌干扰物(EDCs),具有干扰身体分泌系统的正常代谢、扰乱生物体的内分泌功能的作用[4]。有研究表明,外源物可能通过抑制生长激素基因的表达和生长激素受体基因的表达来干扰罗非鱼生长[20]。这与本试验的结果一样,本试验中,灭多威显著影响吉富罗非鱼的生长,且灭多威浓度越高生长抑制效果越强(表1)。
当鱼体受到灭多威污染时,体内会产生氧自由基,SOD是第一个处理氧自由基的酶[21]。SOD通过催化超氧阴离子转化为分子氧(O2)和过氧化氢(H2O2),进而通过CAT催化,保护细胞免受自由基的氧化损伤。本试验中,随灭多威浓度上升和处理时间延长,B、C、D组SOD活性和A组差距减少。原因可能有两个方面:高浓度、长时间灭多威暴露情况下,罗非鱼不能完全代谢灭多威,并且可能在罗非鱼肝脏中积累,进而与SOD结合使其失活;若H2O2没被酶解,可转化为羟基自由基,H2O2和羟基自由基可引起SOD氧化进而降低其活性[21]。本试验中SOD活性的变化规律和课题组前期试验基本一致[6],但CAT活性变化规律略有不同。课题组前期的研究结果显示>0.2 µg/L灭多威会使0~30天罗非鱼的肝脏CAT活性升高[6],这和本试验的结果不同,原因可能是雍菜产生的某种物质缓解了灭多威对肝脏抗氧化系统的影响及导致的肝损伤。第28天B组CAT活性在显著高于其他组,原因可能是因为在灭多威浓度较低、作用时间较短的情况下鱼体产生的应激反应使CAT活性上升。第42天B、C、D组CAT活性显著低于A组,原因可能是在灭多威长时间的作用下CAT活性下降。
GSH作为一种重要的抗氧化剂在解毒反应中发挥着重要作用。它不仅是氧自由基的直接清除剂,还是抗氧化酶底物,能够保护细胞免受有毒物质引起的氧化作用影响[22]。因此,GSH水平的变化被认为是环境应激的潜在生物标志物[4]。之前的研究表明,灭多威可在高浓度和长期暴露的条件下显著降低罗非鱼肝脏中GSH的浓度,且灭多威浓度越高、作用时间越长,GSH浓度下降越多[11]。这和本试验的结果不一致,有研究表明浮床种植植物可能对鱼类免疫因子产生影响[23],产生结果不同的原因可能是雍菜中的某种物质对罗非鱼肝脏抗氧化系统产生了影响,最终缓解了灭多威对罗非鱼肝脏抗氧化系统的压力(图2)。
第56天水体中灭多威浓度显著低于第14、28、42天;在第42天时,水中的灭多威浓度显著低于雍菜的灭多威浓度;第42天雍菜根、茎、叶等部位的灭多威含量呈上升的趋势。说明雍菜能有效吸收水中的灭多威,且随时间延长,灭多威能从水体中转移到雍菜的不同部位。水体中的灭多威主要富集在叶中。
本次试验中,A组的雍菜叶灭多威浓度大于0 µg/L,原因可能是灭多威具有挥发性,从其他灭多威处理组中转移到了雍菜叶上。养殖系统中的灭多威浓度大于初始浓度,可能是因为雍菜吸收了水中的灭多威导致换水时补充的灭多威量大于换掉的水中的灭多威量(图3图4)。
由于本试验在3月份的室内进行,缺少光照和通风,温度较低,雍菜生长较慢,使灭多威不易被吸收和降解。接下来可以进行实地研究,验证在光照、通风和其他温度条件下雍菜对灭多威的处理效果。灭多威作为一种杀虫剂,可以保护雍菜免受虫害,接下来可以研究雍菜吸收了水中灭多威后的抗虫效果。本试验结果发现雍菜影响了罗非鱼肝脏抗氧化系统,但影响的的机理和效果还不清楚,需要进一步研究。
许多国家和地区均制定了水体中灭多威残留限量标准,其中美国规定饮用水中灭多威的安全限量为200 µg/L;欧盟规定饮用水中杀虫剂残留的限量为0.1 µg/L[24];中国的《食品安全国家标准-食品中农药最大残留限量》(GB2763-2016)中规定灭多威在桑枝、荷叶等植物中的最大残留限量为19.12 µg/kg,且灭多威的ADI为20 µg/kg[18]。在实际应用时用于降解灭多威的雍菜可能对人体健康不利,需将吸收了灭多威的雍菜进一步处理,对水产养殖领域生产的雍菜等经济蔬菜进行定期抽检[25],防止灭多威浓度高于ADI。

4 结论

就本试验的结果而言,利用浮床种植雍菜是一种适宜池塘养殖水体净化灭多威的办法。
首先,种植雍菜能部分降低各组水体中氮素含量进而改善水体富营养化状况,其效果在种植42天后效果更为明显。
其次,种植雍菜能够通过减少水中的灭多威浓度来保障鱼类的生长。通过表1可见,灭多威的浓度越高对罗非鱼生长的抑制越强。罗非鱼的生长速率随着灭多威浓度的提高(0~200 µg/L)由3.06±0.02a降低到2.83±0.08b、饲料转化比由1.06±0.01b升高到1.27±0.06a。但雍菜能将水中的灭多威吸收在身体各个部位(图4),减少水中的灭多威浓度(图3)来在一定程度上保障鱼类的生长。
最后,雍菜可能通过影响鱼类的肝脏酶活来降低灭多威的毒性。课题组前期研究了灭多威对罗非鱼肝脏酶活的影响[6,10],其中CAT活性和GSH浓度变化与本试验产生了差异。初步认为雍菜产生的某种物质加强了罗非鱼抗氧化系统的抗氧化能力,但需要进一步的研究。

参考文献

[1]
FAO, 'FAOSTAT-Pesticides'2017[EB/OL]. http://www.fao.org/faostat/en/#data/EP, 2019-04-08.
[2]
孟顺龙, 刘涛, 宋超 , 等. 超高效液相色谱-质谱测定水中灭多威的残留量[J]. 安徽农业科学, 2018,46(23):166-167.
[3]
孙晔, 檀德宏, 纪淑娟 . 灭多威对金鱼的毒性效应[J]. 沈阳农业大学学报, 2013,44(06):827-831.
[4]
孟顺龙, 徐跑, 瞿建宏 , 等. 灭多威在环境中的残留与毒理效应研究进展[J]. 生态学杂志, 2013,32(09):2485-2493.
[5]
Meng S L, Qu J H, Fan L M , et al. Responses of glutathione-related antioxidant defense system in serum of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of methomyl and recovery pattern[J]. Environ Toxicol, 2015,30(4):483-489.
Tilapia were exposed to sublethal concentrations of 0, 0.2, 2, 20, or 200 μg/L for 30 days, and then transferred to methomyl-free water for 18 days. GST, GPx, GR, GSH, and GSSG in tilapia serum were examined at 0, 6, 12, 18, 24, and 30 days after methomyl exposure and at 18 days after transferring to methomyl-free water. There were no significant changes in antioxidants activities and contents in serum of tilapia exposed to 0.2 μg/L. Significant increases in GST, GR, GPx, and GSSG accompanied by a decrease in GSH were observed following methomyl exposure to 2, 20, or 200 μg/L, suggesting the presence of oxidative stress. Thus, it would appear the 0.2 μg/L methomyl might be considered the no observed adverse effect level. Recovery data showed that the effects produced by lower concentration of 20 μg/L were reversible but not at the higher 200 μg/L concentration.
[6]
Meng S L, Chen J Z, Xu P , et al. Hepatic antioxidant enzymes SOD and CAT of Nile tilapia (Oreochromis niloticus) in response to pesticide methomyl and recovery pattern[J]. Bull Environ Contam Toxicol, 2014,92(4):388-392.
Hepatic antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) of Nile tilapia in response to pesticide methomyl and recovery pattern were researched by exposing tilapia to sub-lethal methomyl concentrations of 0, 0.2, 2, 20 and 200 μg/L for 30 days, and then transferred to methomyl-free water for 18 days. Hepatic SOD and CAT were measured at 10 min (day 0), 6, 12, 18, 24 and 30 days after starting the experiment and at 18 days after transferring to methomyl-free water. The results showed hepatic SOD and CAT activities in 2, 20 and 200 μg/L groups were affected significantly, however, that in 0.2 μg/L group didn't change significantly compared to control during 30-day exposure period. Thus it would appear the 0.2 μg/L methomyl might be considered the no observed adverse effect level. Recovery data showed that, for SOD, the effects produced by lower concentration of methomyl 2 μg/L were reversible but not at concentrations higher than 20 μg/L, however, for CAT, the effects produced by all the concentrations were reversible.
[7]
孟顺龙, 瞿建宏, 宋超 , 等. 农药灭多威和辛硫磷对罗非鱼的联合毒性研究[J]. 农业环境科学学报, 2014,33(2):257-263.
[8]
刘涛, 孟顺龙, 裘丽萍 , 等. 灭多威对罗非鱼精巢组织半胱天冬氨酸蛋白酶活性的影响[J]. 环境科学与技术, 2016,39(12):37-41.
[9]
De Freitas Souza C, Baldissera M D, Verdi C M , et al. Oxidative stress and antioxidant responses in Nile tilapia Oreochromis niloticus experimentally infected by Providencia rettgeri[J]. Microb Pathog, 2019,131:164-169.
Bacterial diseases are one of the major problems in freshwater fish culture and have been linked to significant losses and high mortality rate. In this study, Nile tilapia Oreochromis niloticus was infected by Providencia rettgeri to evaluate the oxidative stress and antioxidant responses in the fish tissues. Juvenile Nile tilapia was divided into two groups, as follow: control (uninfected) and experimentally infected with 100 μL of P. rettgeri suspension containing 2.4 × 107 viable cells/fish, and the liver and kidney tissues were collected on days 7 and 14 post-infection (PI). Liver and kidney ROS and lipid peroxidation levels were high in infected fish on day 14 PI compared to control group, while superoxide dismutase activity was lower in liver (days 7 and 14 PI) and kidney (day 14 PI) compared to their respective control groups. Liver and kidney antioxidant capacity against peroxyl radicals, non-proteic, and proteic thiols levels was lower in infected tilapia on day 14 PI compared to control group. Based on these results, P. rettgeri infection may elicit oxidative damage via increased ROS production, decreased ROS elimination and inhibits enzymatic and non-enzymatic antioxidant defense systems; which may contribute directly to disease pathophysiology of infected animals.
[10]
Meng S L, Chen J Z, Hu G D , et al. Effects of chronic exposure of methomyl on the antioxidant system in liver of Nile tilapia (Oreochromis niloticus)[J]. Ecotoxicol Environ Saf, 2014,101:1-6.
The chronic effect of methomyl on the antioxidant system in tilapia (Oreochromis niloticus) was investigated. Fish were exposed to sub-lethal concentrations of 0.2, 2, 20 and 200μgL(-1) for 30 days, and then transferred to methomyl-free water for 18 days. Hepatic antioxidant parameters, including Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), Reduced glutathione (GSH) and oxidized glutathione (GSSG), were measured at 10min (day 0), 6, 12, 18, 24 and 30 days after starting the experiment and at 18 days after transferring to methomyl-free water. There were no significant changes in enzymatic activity and content of antioxidants in liver of tilapia exposed to 0.2μgL(-1) methomyl compared to controls. However, the results showed significant increases in activities of GST, GR, GPx and levels of GSSG accompanied by a decrease in GSH levels following methomyl exposure in tilapia to 2, 20 or 200μgL(-1) over the 30-day exposure period and the highest induction rates in GST, GR, GPx and GSSG were 150.87%, 163.21%, 189.76%, and 179.56% of the control respectively, and the highest inhibition rate in GSH was 50.67% of the control, suggesting the presence of oxidative stress. Thus it would appear that the 0.2μgL(-1) methomyl might be considered as the no observed adverse effect level (NOAEL). Recovery data showed that the effects produced by lower concentration of methomyl 20μgL(-1) were reversible but not at the higher 200μgL(-1) concentration.
[11]
Meng S L, Liu T, Chen X , et al. Effect of Chronic Exposure to Methomyl on Tissue Damage and Apoptosis in Testis of Tilapia (Oreochromis niloticus) and Recovery Pattern[J]. Bull Environ Contam Toxicol, 2019,102(3):371-376.
Tilapia were exposed to 0, 0.2, 2, 20, 200 µg/L methomyl for 30 days, and then transferred to methomyl-free water for 18 days. Caspase-8 in serum, apoptosis rate, microstructure and ultra-microstructure of testis were checked after methomyl exposure and at 18 days after transferring to methomyl-free water. There were no significant changes in Caspase-8 activity, apoptosis rate, and tissue structure in testis exposed to 0.2 and 2 µg/L compared with control. However, when tilapia exposed to 20 and 200 µg/L, the Caspase-8 activity and apoptosis rate were induced significantly, and tissue damage happened compared with the control. Thus it would appear 2 µg/L methomyl might be considered as the no observed adverse effect level. Recovery data showed that the effects produced by lower concentration of 20 µg/L were reversible but not at the higher 200 µg/L concentration.
[12]
刘小虎 . 化学强氧化+生化法组合处理灭多威废水的研究[D]. 南昌:南昌大学, 2015: 1-50.
[13]
米合拜·伊力木拉提, 马晓利, 陈平 , 等. 溴化1-丁基-3-甲基咪唑离子液体在空心菜中的吸收积累特性及其毒理效应[J]. 生态毒理学报, 2018,13(06):307-315.
[14]
杨绍聪, 吕艳玲, 沐婵 , 等. 空心菜对入星云湖河水的净化及其生物产出分析[J]. 农业环境科学学报, 2015,34(2):370-376.
[15]
吴同华, 陈九星, 陈力华 , 等. 灭多威在水稻上的残留检测及降解动态研究[J]. 环境科学研究, 2009,22(9):1093-1097.
[16]
张琪, 张红, 周强 , 等 .灭多威分子印迹光子晶体传感器的制备及应用[J]. 分析化学, 网络首发: 2019 -03-26.
[17]
胡祥娜, 张兵, 周向阳 , 等. 灭多威在蔬菜中残留与降解动态研究[J]. 农药科学与管理, 2004(10):11-13.
采用高效液相色谱法,系统地对灭多威在蔬菜中残留与降解进行动态检测.结果表明:灭多威在蔬菜中能够迅速降解,半衰期为30h.5d以后蔬菜中残留量基本低于0.01mg/Kg.
[18]
Litchfield M L . Methomyl[M]. Geneva:Environmental Health Criteria, 1996: 74.
[19]
张曼平, 战闰, 夏宗凤 , 等. 灭多威的光催化降解动力学研究[J]. 高等学校化学学报, 1998,19(9):1475-1478.
研究了农药灭多威在TiO2光催化下的降解产物、反应动力学及影响降解速率的因素.灭多威在TiO2催化下10min内可被完全转换为无机物而失去毒害作用.IR研究表明,灭多威的分解产物为NH4+、SO42-和CO2,其分解过程为准一级反应.除铜和氯离子在低浓度时有促进作用,而高浓度为阻碍作用外,大部分阴、阳离子对降解均有不利影响.
[20]
郑艳 . 久效磷农药对尼罗罗非鱼(Oreochromis niloticus)幼鱼生长及GH/IGF-Ⅰ轴的影响研究[D]. 青岛:中国海洋大学, 2012: 1-51.
[21]
Zhang J, Shen H, Wang X . Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus[J]. Chemosphere, 2004,55(2):167-174.
There were few reports on the antioxidant response of aquatic organisms exposed to 2,4-dichlorophenol (2,4-DCP). This research explored the hepatic antioxidant responses of fish to long-term exposure of 2,4-DCP for the first time. Freshwater fish Carassius auratus were chosen as experimental animals. The fish were exposed to six different concentrations of 2,4-DCP (0.005-1.0 mg/l) for 40 days and then liver tissues were separated for determination. As shown from the results, 40 days afterwards, the activities of catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) and the content of oxidized glutathione (GSSG) were induced significantly on the whole compared to control group; superoxide dismutase (SOD) responded to 2,4-DCP exposure at only 0.005 mg/l; the content of reduced glutathione (GSH) was suppressed continuously except Group 7; the activity of glutathione reductase was inhibited initially and then restored to control level from Group 4 on; glutathione S-transferase had only slight responses in Groups 3 and 4. Total glutathione (tGSH) and GSH/GSSG ratio were also calculated to analyze the occurrence of oxidative stress. Besides, good dose-effect relations, which cover most of the exposure concentration range, were found between 2,4-DCP level and CAT activity, GSSG content, Se-GPx activity, respectively. In conclusion, SOD and Se-GPx may be potential early biomarkers of 2,4-DCP contamination in aquatic ecosystems, and further studies will be necessary.
[22]
Li Z H, Zlabek V, Grabic R , et al. Modulation of glutathione-related antioxidant defense system of fish chronically treated by the fungicide propiconazole[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2010,152(3):392-8.
Recently, residual fungicides are generally recognized as relevant sources of aquatic environmental pollutants. However, the toxicological effects of these contaminants have not been adequately researched. In this study, the chronic effect of PCZ, a triazole-containing fungicide commonly present in aquatic environment, on GSH-related antioxidant system and oxidative stress indices of rainbow trout (Oncorhynchus mykiss) were investigated. Fish were exposed at sub-lethal concentrations of PCZ (0.2, 50 and 500 microg/L) for 7, 20 and 30 days. GSH levels and GSH-related enzyme activities, including GPx, GR and GST, were quantified in three tissues-liver, gill and muscle. The levels of LPO and CP were also measured as makers of oxidative damage. In addition, the correlations of the measured parameters in various tissues were evaluated by using PCA. The results of this study indicate that chronic exposure of PCZ has resulted in different responses in various tissues and the gill was the most sensitive tissue; however, before these parameters are used as potential biomarkers for monitoring residual fungicides in aquatic environment, more detailed experiments in laboratory need to be performed in the future.
[23]
郑尧, 邴旭文, 裘丽萍 , 等. 浮床栽培鱼腥草对吉富罗非鱼胆汁液中八种免疫因子的影响[J]. 农业环境科学学报, 2016,35(9):1680-1685.
[24]
Van Scoy A R, Yue M, Deng X , et al. Environmental fate and toxicology of methomyl[J]. Rev Environ Contam Toxicol, 2013,222:93-109.
The insecticide methomyl, an oxime carbamate, was first introduced in 1968 for broad spectrum control of several insect classes, including Lepidoptera, Hemiptera, Homoptera, Diptera, and Coleoptera. Like other carbamates, it inhibits AChE activity, resulting in nerve and/or tissue failure and possibly death. Considered highly toxic to insects (larval and adult stages), methomyl is thought to be metabolically degraded via mixed-function oxidase(s). Methomyl has both a low vapor pressure and Henry's law constant; hence, volatilization is not a major dissipation route from either water or moist or dry soils. Photolysis represents a minor dissipation pathway; however, under catalytic conditions, degradation via photolysis does occur. Methomyl possesses a moderate-to-high water solubility; thus hydrolysis, under alkaline conditions, represents a major degradation pathway. Methomyl has a low-to-moderate sorption capacity to soil. Although results may vary with soil type and organic matter content, methomyl is unlikely to persist in complex soils. Methomyl is more rapidly degraded by microbes, and bacterial species have been identified that are capable of using methomyl as a carbon and/or nitrogen source. The main degradation products of methomyl from both abiotic and biotic processes are methomyl oxime, acetonitrile, and CO₂. Methomyl is moderately to highly toxic to fishes and very highly toxic to aquatic invertebrates. Methomyl is highly toxic orally to birds and mammals. Methomyl is classed as being highly toxic to humans via oral exposures, moderately toxic via inhalation, and slightly toxic via dermal exposure. At relatively high doses, it can be fatal to humans. Although methomyl has been widely used to treat field crops and has high water solubility, it has only infrequently been detected as a contaminant of water bodies in the USA. It is classified as a restricted-use insecticide because of its toxicity to multiple nontarget species. To prevent nontarget species toxicity or the possibility of contamination, as with all pesticides, great care should be taken when applying methomyl-containing products for agricultural, residential, or other uses.
[25]
朱素娟, 李龙, 姚成 , 等. 灭多威急性职业中毒2例报道[J]. 中国工业医学杂志, 2017,30(04):291-292.

基金

中国水产科学研究院淡水渔业研究中心基本科研业务费专项项目“养殖水体中灭多威的消解动态及微生物去除技术研究”(2017JBFM07)
现代农业产业技术体系专项“养殖水环境控制岗位科学家”(CARS-46)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1205 KB)

25

Accesses

0

Citation

Detail

段落导航
相关文章

/