2016/2017冬中国气温偏暖的基本特征及可能成因

于骐恺, 高震, 姚素香

中国农学通报. 2020, 36(12): 79-85

PDF(4298 KB)
PDF(4298 KB)
中国农学通报 ›› 2020, Vol. 36 ›› Issue (12) : 79-85. DOI: 10.11924/j.issn.1000-6850.casb18120107
资源·环境·生态·土壤·气象

2016/2017冬中国气温偏暖的基本特征及可能成因

作者信息 +

The Basic Characteristics and Possible Causes of Warm Temperature in China in 2016/2017

Author information +
History +

摘要

利用中国740余站观测的月平均2 m气温资料以及NCEP/NCAR再分析资料,通过动力学诊断的方法,对2016—2017年中国冬季异常偏暖现象进行了研究。结果发现:中国2016—2017年冬季气温偏暖主要是由于西伯利亚高压和阿留申低压偏弱导致东亚冬季风偏弱,在中国存在异常的偏南风。阿留申低压偏弱由两个因素引起,一是由于阿留申群岛地区的海温偏低,冷源对应异常高压导致阿留申低压偏弱;二是阿留申低压在东亚副热带高空西风急流出口区以北,然而该冬季高空西风急流出口区位置偏南,导致阿留申地区偏离急流出口减压区,从而导致阿留申低压偏弱。此外,西风带偏北,中高纬亚洲大陆上空以纬向环流为主,不利于冷空气南下。

Abstract

Based on the monthly mean 2m temperature observation data of more than 740 stations and NCEP/NCAR reanalysis monthly data, using dynamic diagnosis method, the abnormal warm winter phenomenon in China in 2016 to 2017 was studied. The results showed that the warm winter in China in 2016 to 2017 was mainly due to the weak Siberian high pressure and Aleutian low pressure, which led to the weak East Asian winter monsoon, so there was an abnormal southerly wind in China. The weakness of Aleutian low was caused by two factors. First, the sea surface temperature in Aleutian Islands was low, and the cold source corresponded to an abnormal high pressure, which led to the weakness of Aleutian low pressure. Second, the Aleutian low pressure was to the north of the outlet area of the upper westerly jet in the East Asian subtropical region. However, the outlet area of the westerly jet was located to the south in this winter, as a result, the Aleutian area deviated from the pressure relief zone of the jet stream outlet area, resulting in the weakening of the Aleutian low pressure. In addition, the westerlies were northward, and the zonal circulation dominated over the middle and high latitudes of the Asian continent, which was not conducive to the southward movement of cold air.

关键词

暖冬 / 东亚冬季风 / 阿留申低压 / 海温异常 / 副热带西风急流 / 动力学诊断

Key words

warm winter / East Asian winter wind / Aleutian low pressure / SST anomaly / subtropical westerly jet / dynamic diagnosis method

引用本文

导出引用
于骐恺 , 高震 , 姚素香. 2016/2017冬中国气温偏暖的基本特征及可能成因. 中国农学通报. 2020, 36(12): 79-85 https://doi.org/10.11924/j.issn.1000-6850.casb18120107
Yu Qikai , Gao Zhen , Yao Suxiang. The Basic Characteristics and Possible Causes of Warm Temperature in China in 2016/2017. Chinese Agricultural Science Bulletin. 2020, 36(12): 79-85 https://doi.org/10.11924/j.issn.1000-6850.casb18120107

参考文献

[1]
Chen S F, Chen W, Wei K . Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO[J]. Advances in Atmospheric Sciences, 2013,30(6):1712-1724.
Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and El Niño-Southern Oscillation (ENSO) were investigated using an updated temperature dataset comprising 542 Chinese stations during the period 1961-2011. Results showed that the number of winter extreme warm (cold) days across EC experienced a significant increase (decrease) around the mid-1980s, which could be attributed to interdecadal variation of the East Asian Winter Monsoon (EAWM). 
Probability distribution functions (PDFs) of winter temperature extremes in different phases of the AO and ENSO were estimated based on Generalized Extreme Value Distribution theory. Correlation analysis and the PDF technique consistently demonstrated that interannual variation of winter extreme cold days in the northern part of EC (NEC) is closely linked to the AO, while it is most strongly related to the ENSO in the southern part (SEC). However, the number of winter extreme warm days across EC has little correlation with both AO and ENSO. Furthermore, results indicated that, whether before or after the mid-1980s shift, a significant connection existed between winter extreme cold days in NEC and the AO. However, a significant connection between winter extreme cold days in SEC and the ENSO was only found after the mid-1980s shift. These results highlight the different roles of the AO and ENSO in influencing winter temperature extremes in different parts of EC and in different periods, thus providing important clues for improving short-term climate prediction for winter temperature extremes.
[2]
Wang B, Wu Z W, Chang C P , et al. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes[J]. J.Climate, 23(6):1495-1512.
[3]
丁一汇, 张莉 . 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008,32(4):794-805.
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。
[4]
孙林海, 赵振国 . 我国暖冬气候及其成因分析[J]. 气象, 2004,30(12):57-60.
[5]
李勇, 陆日宇, 何金海 . 影响我国冬季温度的若干气候因子[J]. 大气科学, 2007,31(3):505-514.
综合分析了西伯利亚高压、北极涛动、ENSO和西太平洋遥相关型(WP)在年际和年代际时间尺度上对中国冬季温度的影响,结果表明在年际尺度上,WP和西伯利亚高压都对温度有显著影响,WP的影响主要存在于中国东部从东北南部至广东沿海一带大陆边缘区,而西伯利亚高压的影响范围则大得多,几乎涵盖了除黄河长江上游部分地区外的整个中国。在年代际尺度上,北极涛动和ENSO都与东亚冬季风有关联,北极涛动比ENSO的影响范围大,除长江上游沿江地区外的其他地区基本上都是关联区,ENSO与温度的关联区位于35°N以北的整个北方及长江中下游地区。
[6]
Huang R H, Chen J L, Wang L , et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 2012,29(5):910-942.
Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.
[7]
谭晶, 蔡怡, 张海东 , 等. 2012 /2013年冬季中国气温异常成因分析[J]. 大气科学学报, 2016,39(3):361-369.
[8]
Francis J A, Chan W H, Leathers D J , et al. Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent[J]. Geophys.Res.Lett, 2009,36(7):L07503.
[9]
晏红明, 肖子牛 . 印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究[J]. 热带气象学报, 2000,16(1):18-27.
[10]
Liu Y, Wang L, Zhou W , et al. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies[J]. Climate Dyn, 2014,42(11-12):2817-2839.
[11]
He S P, Wang H J, Liu J P . Changes in the relationship between ENSO and Asia-Pacific mid-latitude winter atmospheric circulation[J]. J.Climate, 2013,26(10):3377-3393.
Evaluation of Krabbe disease burden and eligibility for hematopoietic stem cell transplantation are often based on neuroimaging findings using the modified Loes scoring system, which encompasses central but not peripheral nervous system changes. We show that quantitative evaluation of thickened cauda equina nerve roots may improve the evaluation of Krabbe disease and therapeutic guidance.
[12]
中国气象局政策法规司. 暖冬等级:中华人民共和国国家标准:GB/T21983—2008[S].北京:中国标准出版社, 2008.
[13]
缪启龙, 许遐祯, 潘文卓 . 南京56年来冬季气温变化特征. 应用气象学报, 2008,19(5):620-626.
[14]
王凌, 张强, 陈峪 , 等. 1956-2005年中国暖冬和冬季温度变化[J]. 气候变化研究进展, 2007,3(1):26-30.
利用全国565个台站1956-2005年冬季平均温度资料,将多年温度变化划分为偏暖、偏冷和正常三类等概率气候事件,由此给出了一个新的暖冬指数和暖冬的定义。结果表明:暖冬指数与中国冬季温度的变暖趋势相一致,并表现出显著的年代际变化特征,其变率分别为10%/10 a和0.4℃/10 a。近50 a暖冬事件共计发生13次,其中近85%的暖冬发生在1986年以后。受年际尺度变化的影响,2004/2005年和2005/2006年暖冬主要发生在青藏高原和华南南部,而东北、内蒙古及中部大部分地区为冷冬或正常。
[15]
周自江, 王颖 . 中国近46年冬季气温序列变化的研究[J]. 南京气象学院学报, 2000,23(1):106-112.
[16]
龚道溢, 王邵武 . 近百年我国的异常暖冬与冷冬[J]. 灾害学, 1999,14(2):63-68.
[17]
黄嘉佑, 胡永云 . 中国冬季气温变化的趋向性研究[J]. 气象学报, 2006,64(5):614-621.
使用160个测站冬半年月平均气温资料,对中国最近几十年(1951/1952-2003/2004)的冬季气温变化趋向的气候特征进行分析.分析方法包括趋势分析、主分量分析.结果表明,中国冬季的前冬和后冬气温的变化存在明显的年际、年代际趋向性差异.趋向性差异在年际的变化方面的表现,中国南方地区冬季气温变化,最主要的特征是变化趋向的一致性,即前冬有变暖的趋向,后冬也有变暖的趋向,但是前冬变暖趋向不明显.而北方地区与南方地区有不同,表现在冬季气温变化,虽然也存在变暖趋向,但是前冬变暖的趋向比南方趋向明显.第2个气候变化特征,南方地区是前、后冬相反的变化趋向,即前冬暖(冷),后冬则冷(暖).而北方地区这种特征表现不明显.趋向性差异在年代际的趋向性变化方面的表现更加明显.南方地区在1980年以前,前后冬的气温变化趋向都是下降的,但是后冬下降速度较前冬缓和,在1980年以后,前后冬的气温变化趋向都是上升的,但是后冬上升速度也较前冬缓和.而北方地区在1980年以前,前后冬的气温变化趋向同样都是下降的,但是后冬下降速度较前冬加快,而在1980年以后,前后冬的气温变化趋向都是上升的,但是后冬上升速度也较前冬加快.不同的前冬和后冬气温序列不同时段标准化距平的平均值也存在差异.南方地区1980年以前,大部分地区,气温均比常年偏低.但是后冬偏低程度较前冬缓和,而在1980年以后,气温均比常年偏高,后冬偏高的程度也较前冬缓和.而北方地区在1980年以前,冬半年气温均比常年偏低,后冬气温偏低的程度较前冬大.而在1980年以后,冬半年气温均比常年偏高,而且后冬偏高的程度较前冬大.
[18]
康丽华, 陈文, 魏科 . 我国冬季气温年代际变化及其与大气环流异常变化的关系[J]. 气候与环境研究, 2006,11(3):330-339.
[19]
康丽华, 陈文, 王林 , 等. 我国冬季气温的年际变化及其与大气环流和海温异常的关系[J]. 气候与环境研究, 2009,14(1):45-53.
[20]
李维京, 李怡, 陈丽娟 , 等. 中国冬季气温与影响因子关系的年代际变化[J]. 应用气象学报, 2013,24(4):385-396.
[21]
孙晓娟, 王盘兴, 汪学良 . 冬季北半球大气活动中心的环流指数及其应用[J]. 大气科学学报, 2015,38(6):785-795.
[22]
董国庆, 陈志超, 郑广芬 , 等. 宁夏冬季气温变化与大气环流异常的关系[J]. 科学技术与工程, 2018,18(21):10-15.
[23]
贾丹, 简茂球 . 中国冬季月地面气温的年际变化[J]. 气候与环境研究, 2015,20(4):454-464.
[24]
周琳, 孙照渤 . 1961-2010年我国冷空气的活动特征[J]. 大气科学学报, 2015,38(3):342-353.

基金

973项目“热带和中高纬季节内振荡的动力机理及延伸期预报方法研究”(2015CB453200)
国家自然科学金面上项目“区域气候模式中云-辐射-降水过程的超级参数化研究”(41775096)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4298 KB)

Accesses

Citation

Detail

段落导航
相关文章

/