红壤旱地一株自生固氮菌的筛选鉴定及其固氮能力评估

成艳红, 黄欠如, 武琳, 黄尚书, 李小飞, 张昆

中国农学通报. 2020, 36(9): 100-106

PDF(1299 KB)
PDF(1299 KB)
中国农学通报 ›› 2020, Vol. 36 ›› Issue (9) : 100-106. DOI: 10.11924/j.issn.1000-6850.casb18110061
生物技术科学

红壤旱地一株自生固氮菌的筛选鉴定及其固氮能力评估

作者信息 +

A Strain of Abiogenous Azotobacter in Upland Red Soil: Isolation, Identification and Nitrogen Fixation Capacity Evaluation

Author information +
History +

摘要

为了鉴定从红壤中分离得到的一株自生固氮菌,并探讨其固氮能力。采用形态观察、生理生化测定和16S rDNA基因序列分析的方法研究了菌株的分类地位,采用乙炔还原法测定其固氮酶活性,并在室内培养条件下,通过花生、玉米的幼苗盆栽试验研究菌株对土壤MBN、矿化氮和植株氮素积累量的影响。结果表明:从种植于红壤的玉米根际,筛选出15株自生固氮菌,以菌株CM12固氮能力最强,初步鉴定CM12为伯霍尔德杆菌属(Burkholderia sp.),固氮酶活性达C2H4 39.1 nmol/(h·mL)。室内培养试验结果表明,接种CM12菌株的处理,花生和玉米土壤MBN含量较CK处理分别提高了2.38和2.37倍,其中种植花生体系中,接菌处理与施用化学氮肥处理土壤MBN含量无显著差异。接种固氮菌影响了旱地红壤NO3--N和NH4+-N比例,降低了土壤中NO3--N含量,且种植玉米体系中土壤NO3--N含量降低较明显。固氮菌短期接种增加了花生根系和玉米地上植株的氮素积累量。研究结果为该菌株在红壤旱地实际生产中的应用提供了理论基础。

Abstract

To identify a strain of abiogenous azotobacter isolated from red soil and to explore the nitrogen fixation capacity of the strain, morphological observation, physiological and biochemical determination and 16S rDNA sequence identification were used to study the taxonomic status of the strain, and acetylene reduction method was used to determine nitrogenase activity. A peanut and maize seedling pot experiment in greenhouse condition was conducted to study the effect of abiogenous azotobacter on soil microbial biomass nitrogen (MBN), mineralized nitrogen and nitrogen accumulation. The results showed that: 15 azotobacter strains were isolated from maize rhizosphere in red soil, and the strain CM12 had the strongest nitrogen fixation capacity, which was classified as Burkholderia sp.. The nitrogenase activity of CM12 was C2H4 39.1 nmol/(h·mL). The pot experiments showed that, inoculation with CM12 significantly increased MBN content by 2.38 and 2.37-fold in the soil planted with peanut or maize, respectively, compared with the control. In the peanut system, MBN content had no significant difference between CM12 and chemical nitrogen fertilizer application. Abiogenous azotobacter inoculation affected the ratio of soil NO3--N and NH4+-N, decreased the content of soil NO3--N, and the decrease was obvious in maize planting system. Nitrogen accumulation of peanut roots and maize seedlings increased after short-term application of CM12. These results provided the theoretical basis for the application of the strain in the agriculture production in upland red soil.

关键词

红壤旱地 / 自生固氮菌 / 固氮 / 花生 / 玉米

Key words

upland red soil / abiogenous azotobacter / nitrogen-fixing / peanut / maize

引用本文

导出引用
成艳红 , 黄欠如 , 武琳 , 黄尚书 , 李小飞 , 张昆. 红壤旱地一株自生固氮菌的筛选鉴定及其固氮能力评估. 中国农学通报. 2020, 36(9): 100-106 https://doi.org/10.11924/j.issn.1000-6850.casb18110061
Cheng Yanhong , Huang Qianru , Wu Lin , Huang Shangshu , Li Xiaofei , Zhang Kun. A Strain of Abiogenous Azotobacter in Upland Red Soil: Isolation, Identification and Nitrogen Fixation Capacity Evaluation. Chinese Agricultural Science Bulletin. 2020, 36(9): 100-106 https://doi.org/10.11924/j.issn.1000-6850.casb18110061

参考文献

[1]
巨晓棠, 张福锁 . 关于氮肥利用率的思考[J]. 生态环境学报, 2003,12(2):192-197.
[2]
李廷亮, 谢英河, 洪坚平 , 等. 追氮和垄膜沟播种植对晋南旱地冬小麦氮素利用的影响[J]. 植物营养与肥料学报, 2011,17(6):1300-1308.
[3]
曾后清, 朱毅勇, 王火焰 , 等. 生物硝化抑制剂---一种控制农田氮素流失的新策略[J]. 土壤学报, 2012,49(2):382-388.
[4]
Kennedy I R , Choudhury A T M A, Kecskes M L. Non-symbioticbacterial diazotrophs in crop- farming systems: Can their potential for plant growth promotion be better exploited[J]. Soil Biol.Bioch., 2004(8):1229-1244.
[5]
Behera B C, Singdevsachan S K, Mishra R R , et al. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review[J]. Biocatalysis and Agricultural Biotechnology, 2014,3(2):97-110.
[6]
Swarnalakshmi K, Prasanna R, Kumar A , et al. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat[J]. European Journal of Soil Biology, 2013(1):107-116.
[7]
孙建光, 徐晶, 胡海燕 , 等. 中国十三省市土壤中非共生固氮微生物菌种资源研究[J]. 植物营养与肥料学报, 2009, 15(6):1450-1465.
[8]
林敏, 尤崇杓 . 根际联合固氮作用的研究进展[J]. 植物生理学通讯, 1992,28(5):323-329.
[9]
姚拓, 龙瑞军, 王刚 , 等. 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J]. 土壤学报, 2004,41(3):444-448.
[10]
刘剑君, 王豹祥, 张朝辉 , 等. 一株具有固氮功能的烟草根际微生物的鉴定及其初步效应[J]. 植物营养与肥料学报, 2011,17(5):1237-1242.
[11]
贺纪正, 张丽梅 . 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1):98-108.
[12]
李引, 虞丽, 李辉信 , 等. 一株花生根际促生菌的筛选鉴定及其特性研究[J]. 生态与农村环境学报. 2012,28(4):416-421.
[13]
孙建光, 张燕春, 徐晶 , 等. 高效固氮芽孢杆菌筛选及其生物学特性[J]. 中国农业科学, 2009,42(6):2043-2051.
[14]
姜瑛, 吴越, 王国文 , 等. 一株固氮解磷菌的筛选鉴定及其对花生的促生作用研究, 土壤, 2015,47(4):698-703.
[15]
卢秉林, 王文丽, 李娟 , 等. 自生固氮菌的固氮能力及其对春小麦生长发育的影响[J]. 中国生态农业学报, 2009,17(5):895-899.
[16]
东秀珠, 蔡妙英 . 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[17]
Buchanan R, Gibbens N. 伯杰氏细菌鉴定手册[M]. 北京: 科学出版社, 1984.
[18]
Guillemaut P, Maréchal-Drouard L . Isolation of plant DNA: A fast, inexpensive, and reliable method[J]. Plant Molecular Biology Reporter, 1992,10(1):60-65.
[19]
Xia X, Bollinger J, Ogram A . Molecular genetic analysis of the response of three soil microbial communities to the application of 2, 4-D[J]. Molecular Ecology, 1995,4(1):17-28.
[20]
鲍士旦 . 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[21]
唐凤灶 . 安徽铜陵铜尾矿原生演替过程中的土壤固氮菌研究[D]. 广州:中山大学, 2010: 1-58.
[22]
刘晓璐, 杨柳青, 吕乐 , 等. 烟草根际固氮菌的筛选、鉴定及优化培养[J]. 中国烟草学报, 2015,21(1):89-94.
[23]
王慧桥, 陈为峰, 诸葛玉平 , 等. 滨海盐土自生固氮菌的筛选及其对玉米幼苗生长的影响[J]. 河北科技师范学院学报, 2017,31(2):60-67.
[24]
Kizilkaya R . Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains[J]. Ecol Eng, 2008,33(2):150-156.
[25]
王树凤, 陈益泰 . 非豆科植物固氮菌—Frankia的基因组研究进展[J]. 土壤, 2005,37(4):382-387.
[26]
林代炎, 叶美锋, 林琰 , 等. 15N示踪法研究固氮芽孢杆菌应用效果 [J]. 生态环境, 2006,15(6):1310-1312.

脚注

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

基金

江西省科技计划项目“红壤坡耕地氮素扩容增效关键技术研究与示范”(20151BBF60060)
公益性行业(农业科研专项“坡耕地合理耕层构建技术指标研究”201503119-05-01)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1299 KB)

Accesses

Citation

Detail

段落导航
相关文章

/