为进一步探寻高寒地区草地植被物候期生长指标与气象因子间的最佳关系模型,基于近11a的气象和牧草观测资料,采用曲线估计分析法探讨了高寒地区不同年际间草地植被物候期生长指标的变化特征及其与气象因子间的关系。结果表明,不同年际间气温和降水量均无显著差异,草地植被物候期生长指标在不同年际间的表现规律不尽相同。其中2005和2010年草地植被高度显著高于2015年,而植被盖度在不同年际间无显著差异;草地植被产量的变化趋势与植被高度一致。另外,2014年草地植被各生长指标的变异系数最大,分别为85%、55%和94%;而2015年变异程度最小,分别为48%、32%和64%。此外,不同年际间高寒草地植被物候期平均气温与高度无关,而与盖度和产量呈一次函数;年平均降水量与高度、盖度和产量间的最佳拟合模型均呈一次线性方程。由此可见,季节性降水量是驱动高海拔地区草地植被高度、盖度和产量的主导因子。
Abstract
In order to further find the climate models of the grassland vegetation phenological phases between growth indexes and meteorological factors on alpine region, This paper was based on meteorological and nearly 11 a pasture observation data, and used curve estimation analysis method to discuss the characteristics of different interannual grassland vegetation phenological phases growth indexes changes and the relation patterns of the meteorogical factors. The results showed that different annual temperature and precipitation had no significant difference, the growth indexes of grassland vegetation phenological phases performed not the same in different interannual. the grassland vegetation heights of 2005 and 2010 was significantly higher than in 2015, and there was no significant difference among vegetation coverages in the different annual. The tendency of the grassland vegetation yields were in common with vegetation heights. In addition, the largest grassland vegetation variation coefficient of each parameter index in 2014, was 85%, 55% and 94%, respectively; But the minimal variation in 2015, was 48%, 32% and 64%, respectively. Moreover, annual average temperatures had nothing to do with heights in different interannual vegetation phenological periods on alpine meadow, and between coverages and yields were a line functions; Average annual rainfalls with the heights and yields were all line functions. Thus, seasonal precipitation was a driven dominant factor to high altitude meadow vegetation heights, coverages, and the yields.
关键词
高寒草地;植被物候;生长指标;气象因子
{{custom_keyword}} /
Key words
Alpine grassland; Vegetation phenology; Growth indexes; The meteorogical factors
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Tang J W, Korner C, Muraoka H, et al. Emerging opportunities and challenges in phenology: a review[J]. Ecosphere, 2016, 7(8): 1-17.
[2]李强. 近12 a三江源地区植被物候对水热的响应[J]. 干旱区研究, 2016, 33(1): 150-158.
[3]韩小梅, 申双和. 物候模型研究进展*[J]. 生态学杂志, 2008, 27(1): 89-95.
[4]Yin X, Kropff M J, Mclaren G, et al. A nonlinear model for crop development as a function of temperature[J]. Agricultural and Forest Meteorology, 1995, 77(1-2): 1-16.
[5]孟亚利, 曹卫星, 周治国, 等. 基于生长过程的水稻阶段发育与物候期模拟模型[J]. 中国农业科学, 2003, 36(11): 1362-1367.
[6]Setiynon T D, Weiss A, Specht J, et al. Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions[J]. Field Crops Research, 2007, 100(2): 257-271.
[7]Richardson E A, Seeley S D, Walker D R. A model for estimating the completion of rest for Redhaven and Elberta peach trees[J]. Hort Science, 1974, 9(4): 331-332.
[8]Cannell M G, Smith R I. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 1983, 20(3): 951-983.
[9]Masle J,Doussinault G, Farquhar G D, et al. Foliar stage in wheat correlates better to phototermal time than to thermal time[J]. Plant, Cell and Environment, 1989, 12(3): 235-247.
[10]Zalika C, Lucka K B, Klemen B. Modeling of weather variability effect on fitophenology[J]. Ecological Modeling, 2006, 194(1-3): 256-265.
[11]Jolly W M. Developing a near real-time system for monitoring foliar phenology of the terrestrial biosphere[D]. Montana USA: University of Montana, 2004.
[12]White A M, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemistry Cycles, 1997, 11(2): 217-234.
[13]Kang S, Running S W, Lim J H, et al. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index[J]. Remote Sensing of Environment, 2003, 86(2): 232-242.
[14]Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature[J]. Nature Communications, 2015, 6(4): 6911-6919.
[15]Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10): 3647-3656.
[16]Mao J F, Ribes A, Yan B Y, et al. Human-induced greening of the northern extratropical land surface[J]. Nature Climate Change, 2016, 10(6): 959-963.
[17]Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 8(6): 791-795.
[18]Liu Q, Fu Y S H, Zeng Z Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China[J]. Global Change Biology, 2015, 22(2): 644-655.
[19]颜亮东, 张国胜, 李凤霞. 我国北方牧区天然牧草产量形成的气候模式[J]. 草业科学, 2003, 20(7): 8-11.
[20]赵恒和, 郭连云, 赵年武. 高寒草地西北针茅生长发育特征及与气象因子的关系[J]. 干旱区资源与环境, 2011, 25(11): 187-192.
[21]叶辉, 王军邦, 黄玫, 等. 青藏高原植被降水利用效率的空间格局及其对降水和气温的响应[J]. 植物生态学报, 2012, 36(12): 1237-1247.
[22]符瑜, 潘学标. 草本植物物候及其物候模拟模型的研究进展[J]. 中国农业气象, 2011, 32(3): 319-325.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}