
不同种植密度对寒地水稻浅土层热效应的影响
Planting Density Affects the Thermal Effect in Shallow Soil of Cold Region Rice
为了提高人们对寒地水稻浅土层热效应特征变化的认知度。试验在大田条件下,以‘空育131’为试验材料,设置行株距30×8 cm (D1)、30×10 cm (D2)、30×12 cm (D3)、30×14 cm (D4)、30×16 cm (D5) 5个密度水平,分析不同种植密度对浅土层热效应的影响。结果表明,各土层温度在抽穗期达最高值,灌浆后开始下降,且温差缩小,其中以10 cm土层温度稳定性最高。受种植密度影响,高密度处理下土温白天增温快,夜间最低,昼夜温差大,最高日平均温度出现的早,其中D1、D2处理在10 cm、15 cm土温变化上几乎同步。相比之下,各土层Tmax、Tmin出现时间随土层的加深而向后推迟,生育期内Tavg、Tmax、Tmin与气温极显著正相关,而Tmax-min则随密度的增加有减小的趋势,主要表现在分蘖期和成熟期,且作用效果随密度增加而增大。产量以D2处理最高,表现为9.27 t/hm 2,较D1、D5处理增幅13.5%~14.6%。说明适宜密度条件能够实现对浅土层热效应的科学调控,并获得产量的提高。
The objective is to improve people’s awareness of the thermal effect change in shallow soil of rice in cold region. The experiment was carried out in field, and ‘Kongyu131’ was used as the experimental material. Five planting densities were set up, including 30×8 cm (D1), 30×10 cm (D2), 30×12 cm (D3), 30×14 cm (D4) and 30×16 cm (D5), respectively. The effects of different planting densities on the thermal effect of shallow soil were analyzed. The results showed that the temperature of all soil layers reached the highest value at heading stage, and began to decrease after grain filling, and the temperature difference was reduced. The temperature stability of 10 cm soil was the highest. Under the influence of planting density, the soil temperature of high density treatment increased rapidly during the day, the temperature at night was the lowest, and the temperature difference between day and night was large, and the highest daily average temperature appeared earlier. The soil temperature of D1 and D2 treatments changed almost synchronously in 10 cm and 15 cm soil layers. In contrast, the occurrence time of Tmax and Tmin in different soil layers was postponed with the deepening of soil depth. Tavg, Tmax and Tmin were positively correlated with air temperature during the whole growth period, while Tmax-min tended to decrease with the increase of density. The main effects were at tillering stage and filling stage, and the effect increased with the density. D2 treatment had the highest yield of 9.27 t/hm 2, increased by 13.5%-14.6% compared with D1 and D5 treatments. It showed that the appropriate density condition could realize the scientific regulation of the thermal effect of shallow soil layer and improve the yield.
寒地水稻 / 密度 / 热效应 / 产量 {{custom_keyword}} /
rice in cold region / density / thermal effect / yield {{custom_keyword}} /
表1 不同生育时期土温与气温日变化相关分析 |
生育时期 | 土层深度 | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|
返青期 | 5 cm | 0.9731** | 0.9549** | 0.9543** | 0.9435** | 0.9422** |
10 cm | 0.9231** | 0.9320** | 0.9366** | 0.9303** | 0.9302** | |
15 cm | 0.9193** | 0.9240** | 0.9272** | 0.9295** | 0.9272** | |
分蘖期 | 5 cm | 0.9409** | 0.8378** | 0.7916** | 0.7621** | 0.7468** |
10 cm | 0.5366* | 0.5540* | 0.2300 | - 0.1300 | - 0.1900 | |
15 cm | - 0.3900 | - 0.4359* | - 0.5665** | - 0.6898** | -0.7887** | |
生育转换期 | 5 cm | 0.9233** | 0.8319** | 0.8094** | 0.7836** | 0.7750** |
10 cm | 0.4375* | 0.4629* | 0.3900 | 0.3224 | 0.2877 | |
15 cm | 0.1449 | 0.1200 | - 0.0235 | - 0.1893 | -0.4012** | |
拔节孕穗期 | 5 cm | 0.9105** | 0.8123** | 0.7721** | 0.7192** | 0.7606** |
10 cm | 0.3700 | 0.3980* | 0.2900 | 0.1600 | 0.2100 | |
15 cm | 0.0200 | 0.0100 | - 0.1600 | - 0.3700 | - 0.0887 | |
抽穗期 | 5 cm | 0.8169** | 0.6913** | 0.6362** | 0.6082** | 0.5990** |
10 cm | 0.1735 | 0.2052 | 0.0922 | - 0.0447 | - 0.0173 | |
15 cm | - 0.1868 | - 0.2184 | - 0.3912 | - 0.5772** | - 0.3116 | |
灌浆初期 | 5 cm | 0.8422** | 0.7122** | 0.6629** | 0.6365** | 0.6183** |
10 cm | 0.2331 | 0.2447 | 0.1487 | 0.0283 | 0.0335 | |
15 cm | - 0.1131 | - 0.1456 | - 0.3092 | - 0.4908* | - 0.2644 | |
灌浆盛期 | 5 cm | 0.9002** | 0.7605** | 0.7502** | 0.7404** | 0.6480** |
10 cm | 0.2825 | 0.2449 | 0.1594 | 0.0728 | - 0.0283 | |
15 cm | - 0.1364 | - 0.2315 | - 0.4407* | -0.6415** | - 0.3326 | |
灌浆末期 | 5 cm | 0.9474** | 0.8608** | 0.8508** | 0.8617** | 0.7321** |
10 cm | 0.5698** | 0.5033* | 0.4860* | 0.4725* | 0.2898 | |
15 cm | 0.3102 | 0.1885 | 0.0557 | - 0.1109 | 0.1136 |
表2 不同土层Tavg、Tmax、Tmin和Tmax-min与气温变化的相关分析 |
土深 | 土温 | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|
5 cm | Tavg | 0.9087** | 0.9053** | 0.9023** | 0.8989** | 0.8962** |
Tmax | 0.8798** | 0.8604** | 0.8667** | 0.8520** | 0.8525** | |
Tmin | 0.9001** | 0.8949** | 0.8943** | 0.8934** | 0.8915** | |
Tmax-min | - 0.0883 | - 0.0200 | - 0.0781 | - 0.1382 | - 0.0155 | |
10 cm | Tavg | 0.8936** | 0.8929** | 0.88969** | 0.8863** | 0.8835** |
Tmax | 0.8820** | 0.8824** | 0.8774** | 0.8717** | 0.8630** | |
Tmin | 0.8841** | 0.8835** | 0.8824** | 0.8811** | 0.8782** | |
Tmax-min | - 0.1414 | - 0.0480 | - 0.0883 | - 0.1292 | - 0.0583 | |
15 cm | Tavg | 0.8843** | 0.8827** | 0.8778** | 0.8726** | 0.8776** |
Tmax | 0.8820** | 0.8770** | 0.8706** | 0.8633** | 0.8705** | |
Tmin | 0.8840** | 0.8762** | 0.8733** | 0.8704** | 0.8731** | |
Tmax-min | - 0.1411 | - 0.0954 | - 0.1311 | - 0.1706 | - 0.0949 |
表3 不同密度对水稻产量构成及产量的影响 |
处理 | 有效茎数/(个/m2) | 每穗粒数/个 | 每穗粒重/g | 结实率/% | 千粒重/g | 产量/(t/hm2) |
---|---|---|---|---|---|---|
D1 | 687.6 aA | 61.5 c | 1.20 dC | 75.56 cC | 25.88 b | 8.16 bB |
D2 | 692.5 aA | 63.9 bc | 1.33 cB | 80.14 bB | 26.08 ab | 9.27 aA |
D3 | 642.3 bA | 63.5 b | 1.43 bA | 85.61 aA | 26.48 a | 8.94 aAB |
D4 | 589.1 cB | 66.1 a | 1.46 abA | 84.45 aA | 26.29 ab | 8.66 abAB |
D5 | 544.8 dC | 68.2 a | 1.51 aA | 83.25 aA | 25.72 b | 8.11 bB |
[1] |
姚贤良, 程云生 . 土壤物理学[M]. 北京: 农业出版社, 1986.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
侯光良, 李继由, 张谊光 . 中国农业气候资源[M]. 北京: 中国人民大学出版社, 1993: 123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
张慧智, 史学正, 于东升 , 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009,46(2):227-234.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
刘炜, 杨君林, 许安民 , 等. 不同根区温度对冬小麦生长发育及养分吸收的影响[J]. 干旱地区农业研究, 2010,28(4):197-201.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
易福华, 王升 . 温度梯度下土壤水分运动理论的实际应用[J]. 江苏农业科学, 1998(6):45-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
戴万宏, 黄耀, 武丽 , 等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009,46(5):851-860.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
翁倩, 袁大刚, 李启权 , 等. 四川省土壤温度状况空间分布特征[J]. 土壤通报, 2017,48(3):583-588.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
姜丽霞, 宫丽娟, 刘泽恩 , 等. 高寒区温度三因子的时间变化及其与水稻产量的关系研究[J]. 灾害学, 2018,33(1):5-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
孙仕军, 许志浩, 张旭东 , 等. 地膜覆盖对玉米田间土壤含水率和地温变化的影响[J]. 玉米科学, 2015,23(3):91-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
周刊社, 陈华, 卓嘎 . 近43年西藏高原20cm地温对气温和降水变化的响应[J]. 中国农学通报, 2015,31(35):209-216.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
周斌, 陈鹏狮, 李晶 , 等. 辽宁省春季表层地温变化特征及其与气温的关系[J]. 中国农学通报, 2014,30(36):275-280.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
刘蕊, 孙仕军, 张旺旺 , 等. 氧化生物双降解地膜覆盖对玉米田间水热及产量的影响[J]. 灌溉排水学报, 2017,36(12):25-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
闫宗正, 陈素英, 张喜英 , 等. 秸秆覆盖时间和覆盖量对冬小麦田温度效应及地上地下生长的影响[J]. 中国生态农业学报, 2017,25(12):1779-1791.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王平, 郭小俊, 张丽娟 , 等. 不同覆盖方式对小麦产量和土壤水热状况的影响[J]. 水土保持通报, 2017,37(5):69-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
朱奇, 陈青春, 刘玉涛 . 冬季温室土壤中不同方式添加水稻秸秆的腐解及其土温效应研究[J]. 南京农业大学学报, 2018,41(1):181-189.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
何芬, 马承伟, 周长吉 , 等. 基于有限差分法的日光温室地温二维模拟[J]. 农业机械学报, 2013,44(4):228-232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
朱宝文, 胡德奎, 郭晓宁 , 等. 高寒地区日光温室地温变化及预报[J]. 干旱气象, 2014,32(5):765-772
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
雷舜, 王抄抄, 黄炎 , 等. 分蘖期控制灌溉对土温及水稻干物质积累等的影响[J]. 华北农学报, 2016,31(2):153-158.
为了研究超级稻在双季稻区分蘖时期的最佳控水模式,2014年在华南农业大学农场以超级稻玉香油占为试材进行大田试验。在水稻分蘖数达到不同的2个阶段分别设置2个水分梯度处理,记录了控制灌溉期间土壤温度的变化,研究了其对干物质积累动态、LAI变化动态、光合特性以及成穗率和最终产量等的影响。结果表明:分蘖期控制灌溉(0~20 cm土层平均土壤相对含水率为(60±5)%能够扩大土壤5 cm深度日温差,减少拔节前干物质积累,提高拔节期净光合速率和生育后期叶面积指数,优化干物质积累动态,最终提高了W1和W2处理的成穗率与产量。因此,在玉香油占分蘖期控制0~20 cm土层平均土壤相对含水率为(60±5)%,能够达到节水高效栽培的目的。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
齐智娟, 冯浩, 张体彬 , 等. 干旱区大田玉米膜下滴灌土壤水热效应研究[J]. 水土保持学报, 2017,31(1):172-178,185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day- vs. night-time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone--total area 12.6×10(6) km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
施伏芝, 苏泽胜, 罗志祥 , 等. 不同茎蘖苗和栽插密度对协优57产量及其主要经济性状的影响[J]. 安徽农业科学, 2001,29(4):439-440,446.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
许俊伟, 孟天瑶, 荆培培 , 等. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015,41(11):1767-1776.
以籼粳杂交稻品种甬优2640、甬优1640,杂交籼稻品种丰两优香1号、新两优6380为材料,设置6个密度(A: 31.7 cm × 30.0 cm、B: 22.2 cm × 30.0 cm、C: 17.1 cm × 30.0 cm、D: 13.9 cm × 30.0 cm、E: 11.7 cm × 30.0 cm、F: 10.6 cm × 30.0 cm),比较研究不同机插密度对不同类型水稻抗倒伏能力的影响。两年试验结果表明,产量随密度的增加呈先升后降的趋势,籼粳杂交稻和杂交籼稻均以13.9 cm × 30.0 cm处理产量最高。密度对两种类型水稻影响也不完全一致,籼粳杂交稻在C~E密度下产量均高于10.5 t hm-2,且未发生倒伏或倒伏较少,能获得高产稳产;杂交籼稻只有在D密度下产量高于10.0 t hm-2,表观倒伏率较高,较难稳产。随着密度的增加,2个类型品种茎秆的倒伏指数逐渐增大,茎粗、单位节间干重、茎壁厚度都呈下降趋势。随着灌浆时间的增加,籼粳杂交稻倒伏指数先升高后降低,高峰值出现在抽穗后30 d,茎壁厚度、节间充实度、单茎茎鞘重先降低后升高,抽穗后30 d达最低值。杂交籼稻倒伏指数一直升高,茎壁厚度一直下降,节间充实度先下降,抽穗后30 d后略有下降或回升但不明显,单茎茎鞘重先降低后升高,抽穗后30 d最低,抽穗后30 d前后是发生倒伏的敏感时期。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
吴建平, 陈少愚, 李阳 , 等. 栽植密度和播期对水稻广两优5号产量形成的影响[J]. 湖北农业科学, 2015,54(24):6157-6160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
邓中华, 明日, 李小坤 , 等. 不同密度和氮肥用量对水稻产量、构成因子及氮肥利用率的影响[J]. 土壤, 2015,47(1):20-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
刘怀珍, 黄庆, 陆秀明 , 等. 插植密度与插植苗数对超级稻产量和抗倒力的影响[J]. 中国稻米, 2013,19(4):91-93,100.
2009年早、晚季以常规超级稻桂农占为试验材料,研究不同插植密度和栽插苗数对产量、产量构成和植株抗倒力的影响。结果表明,(1)栽插密度对晚季水稻产量具有极显著的影响,高密度有利于高产,但对早季水稻产量的影响不显著;插植苗数对早、晚季的产量影响较小,未达显著水平。(2)栽插密度对单位面积的有效穗数、每穗总粒数、每穗实粒数和群体颖花量影响较大,对结实率和千粒重影响较小;插植苗数对单位面积的有效穗数、每穗总粒数、每穗实粒数影响较大,对群体颖花量、结实率和千粒重影响较小。(3)丛、株抗倒力随插植密度的增大和插植苗数的增多而下降。综上所述,对于常规超级稻品种桂农占在高肥力稻田、适宜的施N量和合理的N肥运畴条件下,早季插植密度以24万丛/hm2、每丛插3苗,晚季插植密度以30万丛/hm2、每丛插4苗,能较好兼顾高产、高效和有效防止倒伏。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
周江明, 赵琳, 董越勇 , 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010,16(2):274-281.
针对部分地区水稻生产中氮肥用量过高及水稻移植密度越来越低的状况,选择2个早稻和2个晚稻品种为试验材料,设置施氮水平和移植密度互作试验,分析两因素及其互作对水稻产量和氮素利用率的影响。结果表明,氮水平和移植密度对水稻产量有显著影响,但其互作效应不显著; 氮水平、移植密度及其互作对氮素利用率的影响均达显著水平。其中,低氮水平处理平均氮素利用率比高氮水平增加2.1%~5.6%; 高密度的氮素利用率比低密度增加10.1%~45.7%。说明提高移植密度,减少氮肥用量,既可通过大幅度增加有效穗来实现高产,又能显著提高氮素利用率。在资源日益短缺、生产成本渐高及面源污染越来越严重的形势下,密植少氮应是值得推广的水稻栽培技术。在本试验条件下,早稻移植密度在29.3~36.0万穴/hm2的基础上施N 153.1~169.4 kg/hm2、晚稻移植密度在23.1~30.0万穴/hm2的基础上施N 161.5~190.1 kg/hm2氮素是高产高效节氮的合理组合。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
张江林, 侯文峰, 鲁剑巍 , 等. 不同施氮量和移栽密度对水稻产量及灌浆特性的影响[J]. 中国农业科技导报, 2017,19(2):75-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
蒋鹏, 熊洪, 张林 , 等. 不同生态条件下施氮量和移栽密度对杂交稻旌优127产量及稻米品质的影响[J]. 核农学报, 2017,31(10):2007-2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |