江淮丘陵区土壤可蚀性K值研究──以肥东县为例

管飞, 叶明亮, 马友华

中国农学通报. 2020, 36(1): 105-111

PDF(1536 KB)
PDF(1536 KB)
中国农学通报 ›› 2020, Vol. 36 ›› Issue (1) : 105-111. DOI: 10.11924/j.issn.1000-6850.casb18080039
资源·环境·生态·土壤·气象

江淮丘陵区土壤可蚀性K值研究──以肥东县为例

作者信息 +

The K Value of Soil Erosion in the Jianghuai Hilly Area: A Case of Feidong County

Author information +
History +

摘要

水土流失是当前较为严重的环境问题之一。江淮丘陵区是水土流失较为严重的区域。本研究以肥东县为例研究土壤侵蚀问题,依据第二次土壤普查资料,采用分段3次Hermite插值法对土壤质地粒径进行转换及几何平均粒径修正模型进行计算,运用数理统计方法及SPSS相关性分析和ArcGIS软件地统计分析对研究区土壤质地类因子和可蚀性K值特征进行了研究。结果表明:(1)水稻土、黄褐土土壤质地组分含量变异系数差异较显著,黄棕壤变异系数差异较低;(2)水稻土、黄褐土质地类各因子主要通过CLA和Dg对土壤可蚀性进行作用,且均为负向作用;(3)肥东县土壤可蚀性K均值为0.02797,水稻土0.0279,黄褐土0.0281,黄棕壤0.0263;(4)不同土壤质地K值平均值中粉壤土最大,砂壤土最小,且土壤质地K值均呈弱变异性;(5)肥东县土壤可蚀性以中等可蚀性、高可蚀性为主。肥东县土壤可蚀性K值空间分布呈现由北向南先降低、后增高、再降低的趋势,由东向西逐渐增高的趋势,存在极大的土壤侵蚀风险。

Abstract

Soil erosion, a severe environmental problem, is serious in the Jianghuai hilly area. Taking Feidong County as an example, and based on the second soil general survey data, we used the three-stage Hermite interpolation method to transform the soil texture particle size and conduct the calculation with the geometric mean particle size correction model, and adopted the mathematical statistics method, SPSS correlation analysis and ArcGIS software statistical analysis to study soil texture factors and erodibility K values. The results showed that: (1) the variation coefficient of soil texture components in paddy soil and yellow cinnamon soil was significantly different, and the variation coefficient of yellow brown soil was lower; (2) the factors of paddy soil and yellow clay soil mainly functioned through CLA and Dg, and they all had negative effects on soil erodibility; (3) soil erodibility K average value was 0.02797 in Feidong County, that of paddy soil was 0.0279, that of yellow cinnamon soil was 0.0281, and that of yellow brown soil was 0.0263; (4) among different soil textures, K value of the silt loam was the largest, and that of the sandy loam soil was the smallest, and the soil texture K value was weakly variable; (5) the soil erodibility of Feidong County was mainly moderately corrosive and highly corrosive. The spatial distribution of soil erodibility K value in Feidong County show a trend of decrease-increase-decrease from north to south, and a gradual increase from east to west, and there is a great risk of soil erosion.

关键词

土壤可蚀性 / 土壤质地 / K值 / 江淮丘陵区 / GIS

Key words

soil erodibility / soil texture / K factor / Jianghuai hilly area / GIS

引用本文

导出引用
管飞 , 叶明亮 , 马友华. 江淮丘陵区土壤可蚀性K值研究──以肥东县为例. 中国农学通报. 2020, 36(1): 105-111 https://doi.org/10.11924/j.issn.1000-6850.casb18080039
Guan Fei , Ye Mingliang , Ma Youhua. The K Value of Soil Erosion in the Jianghuai Hilly Area: A Case of Feidong County. Chinese Agricultural Science Bulletin. 2020, 36(1): 105-111 https://doi.org/10.11924/j.issn.1000-6850.casb18080039

0 引言

草莓是多年生常绿草本植物,在植物分类学上属于蔷薇科(Rosaceae)草莓属(Fragaria),在园艺学上属于浆果类果树。随着国内草莓产业的不断发展,逐步形成了集中性生产区域和专业化生产基地,种植规划逐渐趋向合理,草莓品种改良、繁育方式、栽培及管理技术逐步升级,成为优势农产品产业带、精品区的重要组成部分。据统计,2019年浙江省草莓种植面积6253.34 hm2、产量14.25万t、产值超20亿元[1]。草莓生长喜光,在光照充足的环境下,植株生长旺盛,叶片深绿色,发芽发育好,能够获得丰产。种植过密或遮荫时,由于光照不充足,将影响其正常生长[2-3]。同时,草莓属浅根系作物,叶面较大,叶、茎水分的蒸腾强,因此在整个生长期间都要求有比较充足的水分供应。范长娣等[4]分析闽北光、温、水等气象条件对草莓采收期、产量和单果重的影响,表明草莓移栽后一段时间的温度条件是决定其上市期的关键,温度和光温比是影响草莓产量的主导因子,月降水量、湿温比对产量影响次之;同时,温度低、降水少、湿温配合好,草莓月平均单果重较重。而浙北地区属亚热带季风气候,经常性遭遇低温连阴雨天气[5-7],此时正值大棚草莓开花坐果期和主要采收期,温室内光照不足,会使棚内作物受到损伤,严重时会导致作物停止生长。国内研究人员以番茄、黄瓜、菊花等蔬菜花卉等为试材,经过寡照处理后发现植株的株高、茎粗和叶面积生长速率减小[8-10]
塑料地膜是农业发展中重要的农业生产资料,具有提高地温、保持土壤水分、改善土壤理化性状、延长作物生育期、大幅提高作物产量等优势[11-13]。目前生产中常用的地膜类型为黑色PE膜和透明膜,虽然保水性比较好,可以防除杂草和降低棚内湿度,但也存在反光性差等缺点。围绕不同颜色的地膜应用,吕桂菊等[14]用透明地膜、银灰色反光膜和黑色膜在青椒上进行生产试验,结果显示,3种地膜对青椒均有增产作用,并以银灰色膜的增产效果最好,但Vc和可溶性固形物含量有所下;陈淑兰等[15]研究表明,银灰色地膜覆盖番茄前中后期产量都高于对照。因此,通过地膜覆盖来改善棚内小气候环境,提高作物产量,是生产实践中可以研究的方向。为了探究浙北地区冬春季连阴雨时空发生规律,摸清银黑双色地膜在大棚草莓生产中的应用效果,笔者利用2012—2020年11月—次年4月慈溪国家基本气象站逐日平均气温、24 h降水量观测资料以及日照时数观测资料对该地区低温连阴雨的发生特征进行分析,并于2020年9月在浙江省设施农业气象试验站大棚草莓生产中开展了不同种类地膜的应用效果对比试验,研究不同种类地膜覆盖对草莓植株生长指标及果实发育的影响,为大棚草莓低温寡照灾害防御及设施生产优化提供理论依据。

1 材料与方法

1.1 试验地概况

试验于2020—2021年在慈溪市白沙路街道浙江省设施农业气象试验中心试验基地开展。试验田块地势平坦,土壤类型为壤土,肥力中等,排灌方便,前作为芹菜。试验大棚为标准钢管大棚,南北走向,棚宽8 m,顶高3.2 m,棚长40 m,面积320 m2

1.2 试验材料

供试草莓品种为本地主栽品种‘红颊’。供试地膜分别为银黑双色(上层为银灰色,下层为黑色)和黑色,材质均为聚乙烯,银黑双色地膜厚度为1.2丝,宽度为1 m,黑色地膜厚度为1丝,宽度为1 m,均购至慈溪市浒山创新薄膜经营部。

1.3 试验设计

试验采取大区对比法,在两个规格一致的塑料大棚内,分别做2个处理设计。其中处理1全棚覆盖常规黑膜,处理2全棚覆盖银黑双色膜(银色面对外)。每个处理设置3个小区,随机区组排列,每个小区种植草莓40株。供试草莓于2020年9月8日定植于塑料大棚中,2020年11月9日覆盖地膜,采用高垄栽培,垄高40 cm,垄底宽60 cm,每垄2行,行株距为15 cm×20 cm。两个大棚田间管理操作相同。

1.4 调查方法

1.4.1 气象数据来源

农田小气候观测设备位于两个塑料大棚中部,分别在0.5 m和1.5 m高度设置一个温湿度传感器和太阳总辐射仪,同时在地膜下10 cm处设置温、湿度探头1个,代表浅层土温。温湿度传感器型号DHC2型,太阳总辐射仪型号FS-S6A。数据采集频率为20 s/次,存储每30 min的平均值。棚外数据来源于距试验田100 m的慈溪市国家基本气象站2012—2021年所观测的气象资料,主要包括逐日气温、降水量和日照时数。

1.4.2 株高

在植株进入采收盛期后,分别在试验小区中随机选取10株,用直尺测量株高(植株基部到最高叶片的自然高度)、冠幅(植株冠丛最大幅度之间的距离),重复3次,取平均值。

1.4.3 叶片SPAD值

在植株进入采收盛期后,每隔7 d测定叶片SPAD值。每个小区随机选取5株健壮植株,选择中心展开叶往外数第三叶的中心小叶3个点位,用SPAD-502Plus叶绿素含量测定仪(日本柯尼卡)测量,取平均值作为各叶片的SPAD值[16]

1.4.4 产量和品质

果实成熟后,每个小区随机选取5株作为固定观测样本,对成熟果实进行随熟随采,记目测观察果型、果色、风味。用游标卡尺测量果实横径、纵径。用电子天平测量单果重。用PAL-1型数显糖度计(日本爱宕株式会社)测量可溶性固形物(SSC%)含量。用GMK-835F型水果酸度计测量果实酸度。用HLY-YD5数显果实硬度计测量果实硬度。

1.5 研究方法

1.5.1 连阴雨寡照指标

以国家基本气象站单个站点连续3 d或3 d以上降水量≥0.1mm,其中允许1 d无降水,且日照时数≤2 h,连续2 d无降水为过程结束标志,则定义该测站的1次连阴雨过程[17]

1.5.2 连阴雨发生频次

公式见式(1)。
F=20122020Vi9
(1)
式中F为2012—2020年11月—次年4月慈溪市大棚草莓花果期连阴雨发生频次;Vi为发生连阴雨的次数。

1.5.3 连阴雨强度

连阴雨强度即连阴雨过程降水量与过程日数之比,公式见式(2)。
K=1nAin
(2)
式中,K为连阴雨强度;Ai为日降水量;n为连阴雨过程日数。

1.6 数据处理

数据统计使用Excel 2010软件,数据分析使用SPSS Statistics 27统计分析软件,采用单因素ANOVA进行显著性检验,显著性水平为P<0.05。

2 结果与分析

2.1 2012—2020年慈溪市连阴雨寡照发生频率分布特征

根据1.5.1对连阴雨寡照的定义,得到2012—2020年11月—次年4月慈溪市连阴雨寡照发生频率统计(图1)。由此可知,2012—2020年慈溪市大棚草莓开花坐果期(11月—次年4月)连阴雨共出现86次,概率为17.7%(图1)。连阴雨发生次数最多为11月,最少为4月。连阴雨≥7 d累计出现27次,持续10 d以上的长连阴雨出现11次,其中7 d以上的连阴雨出现最多的是11月,其次是1月。2019年12月—1月出现了长达29 d的连阴雨过程。整体来看,慈溪大棚草莓花果期连阴雨发生次数呈微下降趋势,线性趋势系数为 -0.005。
图1 2012—2020年11月—次年4月逐月连阴雨发生次数

Full size|PPT slide

2.2 2012—2020年慈溪市连阴雨寡照发生强度分布特征

图2给出了2012—2020年11月—次年4月慈溪市连阴雨寡照发生强度分布特征,由此可知,在此期间慈溪市大棚草莓花果期连阴雨强度平均为6.3。2018—2020年大棚草莓花果期连阴雨强度整体处在高位区,其中2018年11月—2019年4月连阴雨强度值最大,为8.33。整体来看,慈溪大棚草莓花果期连阴雨发生强度呈增强趋势,线性趋势系数为0.0264。
图2 2012—2020年11月—次年4月逐月累计降水量和连阴雨强度

Full size|PPT slide

2.3 不同地膜覆盖温室内光温环境的变化

图34给出了不同地膜覆盖平均浅层地温和棚内太阳总辐射随日期变化情况。由此可知,在草莓全生育期,大棚内地温呈现先降后升的趋势,定植后,在未覆盖地膜的阶段,两个处理地温基本保持一致,2020年11月9日覆盖地膜后,银黑双色膜处理组浅层地温整体低于黑膜覆盖处理组,平均气温低0.4℃;随着入春外界日平均气温上升到10℃以上,2021年3月10日起,银黑双色膜处理组浅层地温则高于黑膜覆盖处理组0.5℃;整体来看,在气温较低的冬春季,两种地膜均能有效提升和保持浅层土温至10℃以上。从棚内太阳总辐射变化趋势来看,覆盖地膜后,银黑双色膜处理组太阳总辐射整体高于黑膜覆盖组,平均值高9.1 W/m2。由此说明在气温较低的冬季,银黑双色膜的增温效果不及黑膜,但是由于银色涂层能强烈反射太阳辐射,提高棚内太阳总辐射值,可以起到增加光效的作用。
图3 不同地膜覆盖平均浅层地温随日期的变化

Full size|PPT slide

图4 不同地膜覆盖棚内太阳总辐射随日期的变化

Full size|PPT slide

2.4 不同地膜覆盖对大棚草莓植株农艺性状的影响

表1给出了不同地膜覆盖草莓植株农艺性状对比,由此可知,使用黑色地膜植株在始花期和采收末期的株高均高于使用银黑双色膜。整个生育期,使用黑色地膜株高增长量14.3 cm,而使用银黑双色地膜,植株株高增长量8.7 cm。从冠幅指标来看,使用黑膜和银黑双色膜区别不大。
表1 不同地膜覆盖对大棚草莓植株农艺性状的影响 cm
处理 始花期 采收末期 株高增长量 冠幅增长量
株高 冠幅 株高 冠幅
黑膜(CK) 20.8 40.9 35.1 46.4 14.3 5.5
银黑双色膜 19.6 39.9 28.3 46.5 8.7 6.6

2.5 不同地膜覆盖对大棚草莓叶片SPAD值的影响

图5给出了进入采收期后,不同地膜覆盖大棚草莓叶片SPAD值变化趋势。由图可知,随着生育进程的发展,不同地膜覆盖草莓叶片SPAD值变化趋势较为一致,呈现明显下降后稳步提升的过程。2021年1月22日—2月2日、2021年2月25日—3月8日出现2次明显的连阴雨过程,通过对叶片SPAD值连续测定显示,在此期间,银黑双色膜覆盖处理的叶片叶绿素值要高于黑膜处理组,特别是2月下旬出现的连阴雨过程,在覆盖银黑双色膜棚内的植株叶片SPAD值较为稳定,而在覆盖黑膜棚内,植株叶片SPAD值有明显下降的趋势。说明在低温寡照环境下,银黑双色膜对植株叶片叶绿素的合成有促进作用。
图5 不同地膜覆盖对大棚草莓叶片SPAD值的影响

Full size|PPT slide

2.6 不同地膜覆盖对大棚草莓产量的影响

图6~7给出了不同地膜覆盖对大棚草莓产量以及果实大小、单果重等影响产量形成的指标统计,由此可知,在生产早期(12月—次年2月),银黑双色膜处理草莓平均产量3629.4 kg/hm2,黑膜覆盖处理草莓平均产量2951.1 kg/hm2,增产可达20%;到了生产后期,两种处理产量水平较为一致。从全期来看,银黑双色膜处理可以提高大棚草莓的产量和产值。而从草莓果型来看,不同地膜覆盖对果实横径有一定影响,银黑双色膜处理对横径的增长有一定的促进作用,而对果实纵径则没有明显影响。
图6 不同地膜覆盖对大棚草莓小区产量的影响

Full size|PPT slide

图7 不同地膜覆盖对大棚草莓果实横、纵径的影响

Full size|PPT slide

2.7 不同地膜覆盖对大棚草莓品质的影响

表2给出了不同地膜覆盖对大棚草莓品质指标的统计。由表可知,生产早期银黑双色膜处理草莓可溶性固形物显著高于CK处理,果实酸度与CK无明显差别,生产后期银色双色膜处理组草莓酸度显著低于CK处理。在整个生产期,银黑膜处理组草莓糖酸比均显著高于CK,说明银黑双色膜处理有助于增加糖酸比,提高果实风味。从果实硬度来看,银黑双色膜处理果实硬度更高,更有助于商品化运输。整体来看,大棚覆盖银黑双色膜可以起到促进果实品质提高的作用。
表2 不同地膜覆盖对大棚草莓品质的影响
处理 早期 后期
可溶性固形物
SSC%
酸度 糖酸比 硬度 可溶性固形物
SSC%
酸度 糖酸比 硬度
黑膜(CK) 11.4 0.9 12.6 2.94 9.6 0.8 11.7 1.84
银黑双色膜 12.5* 0.9 13.7* 3.25 9.8 0.7* 14.8* 2.07*
注*表示通过0.05信度的显著性检验。

3 结论与讨论

通过统计分析,2012—2020年慈溪市大棚草莓开花坐果期(11月—次年4月)连阴雨发生概率为17.7%,发生次数呈微下降趋势,线性趋势系数为 -0.005,连阴雨强度平均为6.3,发生强度呈增强趋势,线性趋势系数为0.0264。连阴雨发生次数最多为11月,12月次之,最少为4月;7 d以上的连阴雨出现最多的是11月,其次是1月。而11—12月为草莓头茬果关键的开花坐果期,连阴雨寡照直接影响着草莓的早期产量和品质,会造成在草莓实际生产中植株生长减缓、产量品质下降、发病率提高等情况。
此次实验表明,银黑双色地膜与传统黑色地膜具有相似的增温效果,能够有效提升大棚内浅层地温,保证草莓在冬春季的正常生长。虽然银黑双色地膜对地温的提升作用不及黑色地膜,但是表面的银色涂层能强烈反射太阳辐射,提高棚内太阳总辐射值,可以起到增加光效的作用。而棚内太阳总辐射的增加,可以帮助叶片叶绿素的合成,特别是出现连阴雨天气过程时,低温寡照的环境会减缓植株生长,银膜相较于黑膜能有效促进植株叶片叶绿素的合成,提高叶片SPAD值。叶片是植物进行光合作用的重要场所,光温条件将直接影响叶绿体色素的合成以及光合速率的快慢[18-19],从而对植物的生长发育造成重要影响。有研究表明,低温寡照胁迫下黄瓜叶片光合作用的减弱,是由于黄瓜叶片光合色素含量下降、气孔导度下降、光系统受损,致使叶片捕获的光能减少、气体交换受阻、用于光化学反应的能量减少而引起的[20],这与此次试验结果相一致。
从草莓产量来看,在关键的12月—2月,银黑双色膜处理草莓平均产量3629.4 kg/hm2,黑膜覆盖处理草莓平均产量2951.1 kg/hm2,增产可达20%。而入春后,随着外界气温升高,光照逐渐充足,银黑膜对产量的促进影响不再明显。另外,从草莓品质指标来看,覆盖银黑双色膜,有助于提高草莓果实糖酸比和果实硬度,果实风味更佳,也有助于商品化运输。
因此,在生产上,可以采用覆盖银黑双色地膜,来改善大棚内小气候环境,达到草莓增产增收的作用。目前,慈溪市坎墩街道农创园已开展银黑双色地膜在大棚草莓生产中的应用,得到农户的较好反响。银黑双色地膜的应用,可以推广到大棚番茄、西瓜、葡萄等其他作物,积极应对浙北地区较为频发的连阴雨寡照天气,以达到进一步提升农作物产量和品质的作用。同时,如何应用数值预报产品定量预测连阴雨天气以及草莓如何根据气象条件科学指导果农进行栽培技术管理,以减轻不利气象因素对草莓产量和品质的影响,是可以进一步深入研究的方向。

参考文献

[1]
张建春 . 安徽江淮丘陵区水土流失危害及其防治对策[J]. 中国水土保持, 2006,04:34-35,44.
[2]
黄淑玲, 方刚, 袁新田 , 等. 水土流失成因分析与治理措施——以安徽江淮丘陵地区为例[J]. 广东农业科学, 2010(01):147-149,153.
[3]
张卫 . 皖西大别山区不同土地利用类型的土壤抗侵蚀性——以安徽省岳西县为例[J]. 水土保持通报, 2016,36(2):38-41.
[4]
梁音, 刘宪春, 曹龙熹 , 等. 中国水蚀区土壤可蚀性K值计算与宏观分布[J]. 中国水土保持, 2013(10):35-40.
[5]
翟伟峰, 许林书 . 东北典型黑土区土壤可蚀性K值研究[J]. 土壤通报, 2011,05:1209-1213.
[6]
王彬, 郑粉莉, 王玉玺 . 东北典型薄层黑土区土壤可蚀性模型适用性分析[J]. 农业工程学报, 2012,28(6):126-131.
土壤可蚀性是土壤侵蚀预报和环境效应评价模型的重要参数。该文选取东北典型薄层黑土区宾州河流域为研究区,通过校验极细砂粒含量转换式,分析侵蚀—生产力影响模型(erosion productivity impact calculator,EPIC)、通用土壤流失方程(universal soil loss equation,USLE)和修正土壤流失方程(revised universal soil loss equation,RUSLE2)3种模型K值估算方法间的差异,以探讨各估算方法在东北典型薄层黑土区的适用性。结果表明:与实测值相比,RUSLE2模型整体“低估”极细砂粒含量,平均低估22.5%;建立的薄层黑土区极细砂粒含量转换方程可使估算精度提高95%以上。RUSLE2模型K值估算方法适用于薄层黑土区。EPIC与USLE模型K值估算方法均“高估”薄层黑土区的土壤可蚀性,但通过建立的修正方程进行校正,仍可用于中国东北薄层黑土区K值估算。该研究可为薄层黑土区及相似地区的土壤侵蚀定量评价和土壤质量危险性评价提供必要的科学依据。
[7]
张科利, 蔡永明, 刘宝元 , 等. 黄土高原地区土壤可蚀性及其应用研究[J]. 生态学报, 2001,21(10):1687-1695.
通过回顾已有的成果 ,分析评价了我国土壤可蚀性研究的进展及存在的问题 ,提出我国土壤可蚀性研究中的标准小区定义。运用野外观测资料 ,研究计算了黄土高原地区土壤可蚀性指标值。结果表明 ,陕北和晋西北一带黄土可蚀性 K值变化于 0 .3~ 0 .7之间 ,并且有以陕西子洲、绥德一带为最大 ,以此为中心 ,向南、向北和向东都减少的变化趋势。
[8]
张科利, 彭文英, 杨红丽 . 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007,44(1):7-13.
[9]
王彬 . 土壤可蚀性动态变化机制与土壤可蚀性估算模型[D]. 杨凌:西北农林科技大学, 2013.
[10]
Sharply A N, Williams J R . EPIC-Erosion/Productivity impact calculator: Model documentation[M]. U S Department of Agriculture Technical Bulletin, 1990.No.1768-1772.
[11]
陆建忠, 陈晓玲, 李辉 , 等. 基于GIS/RS和USLE鄱阳湖流域土壤侵蚀变化[J]. 农业工程学报, 2011,27(2):337-344.
将空间信息技术(RS和GIS)和通用土壤流失方程(USLE)相结合对鄱阳湖流域土壤侵蚀量进行计算。分别利用1990年和2000年TM/ETM+影像分类得到两期土地利用/覆盖类型图,结合鄱阳湖流域数字高程模型(DEM)、土壤类型分布图和流域降雨资料分别获取USLE模型中各因子值的空间分布,最后计算流域2个年份的土壤侵蚀空间分布图。研究表明:鄱阳湖流域土壤侵蚀区域主要分布在赣江上游,信江上游,抚河上中游和修水上游地区;鄱阳湖流域1990年和2000年大范围土地经受着Ⅰ级微度与Ⅱ级轻度侵蚀,其侵蚀面积之和分别占流域面积的97.38%和97.30%;而流域产沙主要来源于Ⅱ级轻度侵蚀和Ⅲ级中度侵蚀,所占土壤侵蚀总量分别为58.16%和51.20%,其中中度以上等级的侵蚀对产沙量的贡献是不可忽视的;从1990年到2000年土壤侵蚀等级变化呈现了由中等级侵蚀(Ⅱ级轻度侵蚀和Ⅲ级中度侵蚀)向低等级(Ⅰ级微度侵蚀)和高等级侵蚀(Ⅴ级极强度和Ⅵ级剧烈侵蚀)的2个极端演化的趋势。鄱阳湖流域土壤侵蚀量从1990年到2000年增长幅度达6.3%;土壤平均侵蚀模数都约为1 100 t/(km2·a),属于Ⅱ级轻度侵蚀。分析2个年份的土地利用/覆盖变化,发现鄱阳湖流域湿地和农田面积减少,建筑用地增加均是造成土壤侵蚀量增加的因素,而降雨侵蚀力因子空间格局也对土壤侵蚀空间分布具有重要影响,最后提出了鄱阳湖流域水土保持规划措施。
[12]
王彬, 郑粉莉, 王玉玺 . 东北典型薄层土壤可蚀性模型适用性分析[J]. 农业工程学报, 2012,28(6):126-131.
土壤可蚀性是土壤侵蚀预报和环境效应评价模型的重要参数。该文选取东北典型薄层黑土区宾州河流域为研究区,通过校验极细砂粒含量转换式,分析侵蚀—生产力影响模型(erosion productivity impact calculator,EPIC)、通用土壤流失方程(universal soil loss equation,USLE)和修正土壤流失方程(revised universal soil loss equation,RUSLE2)3种模型K值估算方法间的差异,以探讨各估算方法在东北典型薄层黑土区的适用性。结果表明:与实测值相比,RUSLE2模型整体“低估”极细砂粒含量,平均低估22.5%;建立的薄层黑土区极细砂粒含量转换方程可使估算精度提高95%以上。RUSLE2模型K值估算方法适用于薄层黑土区。EPIC与USLE模型K值估算方法均“高估”薄层黑土区的土壤可蚀性,但通过建立的修正方程进行校正,仍可用于中国东北薄层黑土区K值估算。该研究可为薄层黑土区及相似地区的土壤侵蚀定量评价和土壤质量危险性评价提供必要的科学依据。
[13]
朱冰冰, 李占斌, 李鹏 , 等. 土地退化/恢复中土壤可蚀性动态变化[J]. 农业工程学报, 2009,25(2):56-61.
利用EPIC公式计算了不同开垦和退耕年限的土壤可蚀性K值,对黄土高原典型自然恢复区子午岭林区土地退化/恢复过程中土壤可蚀性的动态变化进行了系统的研究。结果表明:土地开垦后,土壤颗粒向粗骨化方向发展,有机碳含量降低,土壤可蚀性逐渐增强;土地退耕过程中,土壤有机碳含量逐渐增加,肥力水平提高,可蚀性逐渐减小;土壤中有机碳含量、全氮含量、水稳性团聚体含量以及团聚度与土壤可蚀性K值相关最为密切;土壤可蚀性的强弱本质上取决于土壤有机碳含量,恢复植被以提高土壤有机质含量,促进土壤团聚体的形成,增强土壤团聚度,是降低土壤可蚀性能的重要途径。
[14]
张鹏宇, 王全九, 周蓓蓓 . 陕西省耕地土壤可蚀性因子[J]. 水土保持通报, 2016,36(5):100-106.
[15]
Shirazi M A, Boersma L . A unifying quantitative analysis of soil texture[J]. Soil science society of America Journal, 1984,48(1):142-147.
[16]
Wang B, Zheng F L, Rmkens M J M . Comparison of soil erodibility factors in USLE, RUSLE2, EPIC and Dg models based on a Chinese soil erodibility database[J]. Soil and Plant science, 2013,63(1):69-79.
[17]
胡宏祥, 马友华 . 卡庆斯基制与美国制间土粒分析结果的转换[J]. 安徽农业科学, 2004,06:1156-1157.
[18]
蔡永明, 张科利, 李双才 . 不同粒径制间土壤质地资料的转换问题研究[J]. 土壤学报, 2003,40(4):511-517.
[19]
谢毅文, 陈晓宏, 王兆礼 , 等. 土壤质地转换中优选插值方法研究[J]. 灌溉排水学报, 2009,28(3):50-52,57.
[20]
郭中领, 张科利, 董建志 , 等. 利用分形理论解决不同土粒分级标准间土壤质地资料的转换问题[J]. 地理科学, 2011,31(10):1254-1260.
摘要
基于分形理论,选取黄土高原南部厢寺川林场地区20个典型样点,每个样点取3个剖面,共60个土样的实测土壤颗粒粒径分布数据,分别应用分形模型、对数正态模型、逻辑生长模型、WEIBULL模型预测土壤颗粒累积百分含量,提出一种预测土壤颗粒粒径分布的分形模型。结果表明,在0.002~0.1mm粒级范围内,分形模型对已知土壤资料的粒级个数和预测粒级的大小等因素并不敏感,具有较高的预测精度和稳定性;与对数正态模型、逻辑生长模型和WEIBULL模型相比,分形模型的总体预测误差最小且未出现大误差数据,可以有效对不同土粒分级标准间土壤质地资料进行转换。
[21]
袁志发, 周静芋 . 多元统计分析[M] 北京: 科学出版社, 2002.
[22]
王彬 . 东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算[D]. 杨凌:西北农林科技大学, 2009.
[23]
周宁, 李超, 琚存勇 , 等. 黑龙江省土壤可蚀性K值特征分析[J]. 农业工程学报, 2015,31(10):182-189.
土壤可蚀性K值是评价土壤对侵蚀敏感程度和进行土壤侵蚀预报的重要参数,是支撑水土保持监测、预报和规划的重要基础。为了建立基于通用土壤流失方程的土壤侵蚀量估算数据库,需要掌握了解K值特征,该文采用对变量数字特征和离散程度的传统统计,以及克里格插值的地统计方法分析黑龙江省土壤普查相关数据和土壤可蚀性K值特征。结果表明:1)主要土类间土壤质地组分含量具有显著差异性,粗粉粒、细粉粒和黏粒含量服从正态分布且块金效应均大于75%,表现出很弱的空间相关性。2)主要土类K值期望,风砂土最大、白浆土最小,变异系数均小于10%,呈弱变异性。3)土壤质地K值期望,砂壤土最大、中黏土最小,总体上随物理性黏粒含量的增大而减小,随物理性砂粒含量减小而减小,除重黏土变异系数为19.99%,呈中等变异性外,其他土壤质地变异系数均小于10%,呈弱变异性。4)随表层厚度的增加,K值期望呈线性显著(R2=0.83)的平缓递减趋势。5)不同土壤侵蚀类型区域的K值及其分布特征差异较大,类型相同而强度不同的土壤侵蚀区域K值及其分布具有相似的分布规律。6)K值块金效应为73.30%,具有中等的空间相关性,自西向东呈平缓的线性递减分布趋势,由北至南呈上开广口抛物线状分布趋势,其极大值区与风砂土主要分布区,2个极小值区与白浆土、黑土主要分布区,具有空间一致性,此外,水土保持区划中分区的功能定位体现了K值的分布特征。该研究可为黑土资源的保护与修复提供科学依据,对黑土地能够继续、持续地保障粮食生产安全具有积极意义。
[24]
梁音, 史学正 . 长江以南东部丘陵山区土壤可蚀性 K值研究[J]. 水土保持研究, 1999,6(2):47-52.

基金

安徽省农业生态环保与质量安全产业技术体系专项经费(201701425)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1536 KB)

文章所在专题

园艺

Accesses

Citation

Detail

段落导航
相关文章

/