过量表达OsCATb提高大肠杆菌对不同重金属逆境胁迫的耐受性

刘大丽,马龙彪,鲁振强

中国农学通报. 2018, 34(34): 36-41

中国农学通报 ›› 2018, Vol. 34 ›› Issue (34) : 36-41. DOI: 10.11924/j.issn.1000-6850.casb18070019
生物技术科学

过量表达OsCATb提高大肠杆菌对不同重金属逆境胁迫的耐受性

  • 刘大丽,马龙彪,鲁振强
作者信息 +

Over-expression of OsCATb Enhanced E. coli Stress Tolerance to Heavy Metals

Author information +
History +

摘要

为了进一步研究水稻Catalase b (OsCATb)在重金属逆境胁迫下的作用机制,笔者将外源表达重组质粒pGEX-6p-3-OsCATb转化到大肠杆菌BL21中。SDS-PAGE表明,通过IPTG的诱导表达,在53 kDa的位置获得了与推测分子量大小相一致的可溶性目的蛋白。在1 mmol/L Cd、Zn和Cu的重金属逆境胁迫下,过量表达GST-OsCATb 的重组菌表现出优于对照菌株(BL21)以及过量表达标签蛋白GST的空载体菌株的耐受性;同时,目的基因重组菌体内的过氧化氢酶活性也要远高于实验对照组。研究结果也进一步暗示了水稻OsCATb 作为重要的抗氧化剂,能够参与到细胞的重金属逆境胁迫应答、解毒和耐受机制过程中。

Abstract

The paper aims to study the mechanism of Oryza sativa Catalase b (OsCATb) in heavy metal stress. We introduced the exogenous reconstructed plasmid pGEX-6p-3-OsCATb into E. coli BL21. SDS-PAGE showed that there was a soluble protein band in 53 kDa in accordance with its predicted molecular weight. Under 1 mM Cd2+, Zn2+ or Cu2+ heavy metal stress, strain over-expressing GST-OsCATb exhibited better growth and increased tolerance than control (BL21) and E. coli over-expressing GST tag; meanwhile, the catalase activities in aimgene recombinant strain were also higher than the other two controls’. The results suggest that rice OsCATb appears to be an important antioxidant in cellular response, detoxification and tolerance processes under heavy metal stress.

关键词

重金属逆境;过氧化氢酶;大肠杆菌;OsCATb基因

Key words

heavy metal stresses; catalase; E. coli; OsCATb gene

引用本文

导出引用
刘大丽,马龙彪,鲁振强. 过量表达OsCATb提高大肠杆菌对不同重金属逆境胁迫的耐受性. 中国农学通报. 2018, 34(34): 36-41 https://doi.org/10.11924/j.issn.1000-6850.casb18070019
Over-expression of OsCATb Enhanced E. coli Stress Tolerance to Heavy Metals. Chinese Agricultural Science Bulletin. 2018, 34(34): 36-41 https://doi.org/10.11924/j.issn.1000-6850.casb18070019

参考文献

[1]Gupta D K,SPena L B, Romero-Puertas M C, et al. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity[J].SPlant Cell and Environment, 2016,S40:509-526.
[2]Sytar O, Kumar A, Latowski D,Set al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants[J].SActa Physiologiae Plantarum, 2013,S35:985-999.
[3]Gallego SM, Pena LB, Barcia RA, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms, Environmental and Experimental Botany, 2012, 83:33-46.
[4]Thapa G, Sadhukhan A, Panda S K, et al. Molecular mechanistic model of plant heavy metal tolerance[J]. Biometals, 2012, 25: 489-505.
[5]Romero-Puertas M C, Corpas F J, Rodriguez-Serrano M, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J]. Journal of Plant Physiology, 2007, 164:1346-1357.
[6]Maksymiec W, Krupa Z. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2006, 57: 187-194.
[7]Cho U-H, Park J-O. Mercury-induced oxidative stress in tomato seedlings[J]. Plant Science, 2000, 156:1-9.
[8]Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Reviews, 1992, 43:83-116.
[9]Soydam-Aydin S,SBüyük I,SCansaran-Duman D,Set al. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu(+2) and Zn(+2) heavy metal stresses[J]. Environmental Monitoring and Assessment, 2015, 187(12):726.
[10]Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Journal of Plant Physiology, 2007, 164:601–610.
[11]Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system[J]. Ecotoxicology, 2013, 22:584–596.
[12]Li H,Luo H,Li D,et al. Antioxidant enzyme activity and gene expression in response to lead stress in Perennial Ryegrass[J]. Journal of the American Society for Horticultural Science, 2012, 137(2):80-85.
[13]Aydin S S, ?lker B, Esra G G, et al. Effects of lead (Pb) and cadmium (Cd) Elements on lipid peroxidation, catalase enzyme activity and catalase gene expression profile in tomato plants[J]. Journal of Agricultural Science, 2016, 22:539-547.
[14]Cong M, Lv J, Liu X, et al. Gene expression responses in Suaeda salsa after cadmium exposure[J]. Springer Plus, 2013, 2:232.
[15]Guan Z Q, Chai T Y, Zhang Y X, et al. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA[J]. Chemosphere, 2009, 76:623-630.
[16]Purev M, Kim Y J, Kim M K, et al. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses[J]. Plant Physiology and Biochemistry, 2010, 48:451-460.
[17]Liu D L, Lu Z Q, Liu S K. Characteristics of recombined protein GST-OsCATB expressed in E. coli.[J], Bulletin of Botanical Research, 2011, 31(6):692-695.
[18]Anjum N A., Sharma P, Gill S S, et al. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants[J]. Environmental Science and Pollution Research, 2016, 23:19002-19029.
[19]Ye N,SZhu G,SLiu Y,Set al. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress[J]. Plant Cell and Physiology,S2011,S52(4): 689-98.
[20]Shen M, Zhao D-K, Qiao Q, et al. Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress[J].SPLoS ONE, 2015, 10(4):e0123418.
[21]Sanaa M F, Gad E -R, Romany N N, et al. The influence of heavy metals toxicity on the antioxidant enzyme activities of resistant E. coli strains isolated from waste water sites[J]. International Journal of Current Microbiology and Applied Sciences, 2013, 2(12):162-175.

Accesses

Citation

Detail

段落导航
相关文章

/