[目的]秋季低温冷害对晚稻生产不利影响极大,准确预警其出现对夺取晩稻高产稳产意义重大。[方法]釆用模糊数学知识原理研制田阳秋季低温冷害始现时段预警输出模型,选配适合于模糊事件秋季低温冷害初日出现时段的隶属函数,计算各预报因子隶属度,结合数理统计学知识,建立多元线性回归预警输出模型,作秋季低温冷害初日出现时段第一次预警;第二次预警,采用模糊数学并、交运算逻辑关系原理制作预警模型。[结果]第一次预警历史拟合率87.3%,第二次预警历史拟合率88.5%。试警四年,第一次试警正确三年,正确率75.0%,二次试警一年,试警正确。[结论]秋季低温冷害模糊数学预警输出模型,技术科学,方法易学易懂,历史正确拟合率、试警准确率结果理想。
Abstract
Low temperature and cold damage in autumn has great adverse effect on late rice production, accurate early warning is of great significance for the high and stable yield of late rice. Using the principle of fuzzy mathematics, we studied the starting time early warning output model of low temperature and cold damage in Tianyang, selected a membership function suitable for the initial date emergence period of the low temperature and cold damage in autumn, calculated the membership degree of each prediction factor, built the multiple linear regression with the knowledge of mathematical statistics, and made the first early-warning of initial date emergence period of the low temperature and cold damage in autumn. Then, we used the principle of fuzzy mathematics and the logical relation between parallel and intersection operations to make the second early-warning. The results showed that the historical fitting rate of the first early-warning reached 87.3%, the historical fitting rate of the second early-warning reached 88.5%. During four years’test early-warning, the first early-warning was correct in three years, the correct rate reached 75.0%. The second early-warning was tested for one year, and the result was correct. The fuzzy mathematics warning output model for low temperature and cold damage in autumn is scientific and easy to understand, the correct rate of historical fitting and the accuracy rate of test early-warning are ideal.
关键词
田阳;秋季低温冷害;模糊数学;预警模型
{{custom_keyword}} /
Key words
Tianyang; low temperature and cold injury in autumn; fuzzy mathematics; early warning model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 欧阳兆云,张和稳,周冬梅.田阳秋季低温冷害规律性的诊断[J].气象研究与应用,2012,33(2):31-33
[2] 魏瑞江,张文宗,李二杰.河北省冬小麦生育期气象条件定量评价模型[J].中国农业气象,2007,28(04):367-370
[3] 王永弟.模糊时间序列模型在短期气候预测中的应用 [J].南京信息工程大学学报(自然科学版),2012,04(4):316-320
[4] 刘芳芳,连 华,王建兵,等.基于模糊数学模型的张掖市水资源价值计算研究[J].中国农学通报,2016,32(2):87-91.
[5] 吉志红,陈敏,张心令.基于GIS的三门峡市苹果种植气候适宜性区划[J].气象与环境科学,2015,38(1):61-66
[6] 刘方,胡彩虹,何鹏飞.基于数理统计方法的降水量预测模型建立及应用[J].气象与环境科学,2011,37(2):89-93
[7] 朱琳,李星敏,朱延年,等.基于GIS的陕南柑桔气候生态适宜性区划[J].中国农业气象,2011,32(01):122-12
[8] 段春锋,徐敏,曹雯,等.安徽省寒露风初日的时空分布特征及气候趋势预测[J].中国农学通报,2014,30(32):276-281.
[9] 段永春.茶树干燥型大冻害气象因素的logistic回归分析[J].中国农学通报,2016,32(7):152-156.
[10] 罗伯良,李易之.湖南双季晚稻寒露风初日的气候演变特征及其预测模型[J].中国农业气象,2015,36(3):338-345.
[11] 魏瑞江,宋迎波,王鑫.基于气候适宜度的玉米产量动态预报方法[J].应用气象学报,2009,20(5):622-627.
[12] 赵辉,吴骞.豫南一季中稻生育期气象因子与产量及其构成要素相关性分析[J].气象与环境科学,2011,34(4):68-7
[13 ] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999:43-47,49-50,69-72.
[14]张伟,王峰,郭艳芬,等.基于Logistic 回归的森林火险天气等级模型[J].东北林业大学学报,2013,41(12):121-122,131
[15] 梁聪,何林宴,许艺馨,等.贵港近50年寒露风发生规律分析及对晚稻的影响[J].气象研究与应用,2015,36(1):108 -111.
[16] 吕伟生,曾勇军,石庆华,等.近30年江西双季稻安全生产期及温光资源变化[J].中国水稻科学,2016,30(3):323-334
[17] 钟新科,刘洛,宋春桥,等.基于气候适宜度评价的湖南春玉米优播期分析[J].中国农业气象,2012,33(1):78-85
[18] 代立芹,李春强,魏瑞江,等.河北省冬小麦气候适宜度及其时空变化特征分析[J].中国农业气象,2011,32(3):399-406.
[19] 石春林,骆宗强,江敏,等.减数分裂期高温对水稻穗粒数影响的定量分析[J].中国水稻科学,2017,31(6):658-664
[20] 周刊社,陈华,卓嘎.近43年西藏高原20cm地温对气温和降水变化的响应[J].中国农学通报,2015,31(35):209-216.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}