为更好地理解西红花类胡萝卜素合成代谢途径,从西红花中分离和克隆了1 个新的β-胡萝卜素羟化酶基因CsBCH1-z,并从柱头cDNA中克隆了该基因的全长编码序列为906 bp,编码301 个氨基酸残基,对应的基因组序列为1261 bp,5 个外显子由4 个内含子子间隔开。与已知的CsBCH1 基因的氨基酸序列比较,发现在N端由于6 个碱基的缺失,造成了2 个氨基酸的缺失和1 个氨基酸由异亮氨酸突变为亮氨酸,另外还有一处单碱基的变异造成苏氨酸突变为丙氨酸。通过预测其蛋白含有3 个明显的跨膜结构域,C端包含了2 组“HXXXXH”和“HXXHH”结构域,是典型的脂肪酸羟化酶。β-胡萝卜素羟化酶是西红花苷合成的重要前体物质,CsBCH1-z 柱头中的表达量>叶片>花瓣;雄蕊中表达很低;球茎中表达不可见。
Abstract
For further interpretation the apocarotenoid biosynthetic pathway in saffron, CsBCH1-z —a novel β carotene hydroxylase gene was isolated from stigma, and was cloned, which the full length of encoding region was 906 bps, contained 301 amino acid residues, and the corresponding to the genomic sequence of 1261bp, five exons separated by 4 introns. Compared with the amino acid sequence of the known CsBCH1 gene, there were two amino acids deletion and one amino acid changed from isoleucine to leucine caused by 6 bases deletion in the N- terminal, and another amino acid changed from threonine to alanine which was resulted in one SNP. It predicted CsBCH1-z protein contained 3 distinct transmembrane domains, C terminal contained two ‘HXXHH’ domain, was a typical fatty acid hydroxylase. As the key precursor of crocin synthesis, the expression level of CsBCH1-z was higher in stigma > leaves > petal, was very low in stamen, while was invisible in corm. The gene cloning and bioinformatics analysis of the novel saffron beta carotene hydroxylase provided the theoretical basis of the saffron active components biosynthetic process and accumulation.
关键词
西红花;β-胡萝卜素羟酶;克隆;生物信息学分析
{{custom_keyword}} /
Key words
Saffron; beta carotene hydroxylase; Cloning; Bioinformatics analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国国药典.一部.第三增补版[M].北京:化学工业出版社,2010:144-145.
[2] 季文军,代文婷.中药藏红花的研究概况[J].海峡药学,2011,23(10):79-81.
[3] 黄卫娟,龙春林.番红花的药用历史与现代研究[J].中央民族大学:自然科学版, 2015,24(3):55-58.
[4] 徐象华,施林妹,朱波,等.不同产地西红花开花与有效成分含量研究[J].浙江农业科学, 2012,12: 1639-1641.
[5] 陈阳,杨婷,黄娟,等.西红花苷和西红花酸在小鼠体内抗氧化活性对比研究[J].中国药理学通报, 2010, 26(2):248-251.
[6] 张业昊,丛伟红,刘建勋.西红花苷的药理作用研究进展[J].中药药理与临床, 2015, 31(2): 124-127.
[7] Verma S K, Bordia A. Antioxidant property of saffron in man[J]. Indian Journal of Medical Sciences,1998,52:205-207.
[8] 王平,童应鹏,陶露霞,等.西红花的化学成分和药理活性研究进展[J].中草药,2014,45(20):3015-3028.
[9] Cazzonelli C I. Carotenoids in nature: insights from plants and beyond[J]. Functional Plant Biology,2011,38:833-847.
[10] Cunningham F X, Gantt E. Genes and enzymes of carotenoids biosynthesis in plants. Annual Review of Plant Physiology & Plant Molecular Biology,1998,49:557-583.
[11] Baba S A, Mohiuddin T, Basu S, et al. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis[J]. BMC Genomics,2015,16:698-711.
[12] Pfander H, Schurtenberger H. Biosynthesis of C20-carotenoids in Crocus sativus[J]. Phytochemistry,1982,21(5):1039-1042.
[13] Tian Li, Magallanes-Lundback M, Musetti V, et al. Functional analysis of β- and ε-carotene hydroxylase in Arabidopsis. Plant Cell,2003,15:1320-1332.
[14] Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis genome-wide expression profiling and phylogenetic analysis[J]. Molecular Genetics and Genomics,2010,283:13-35.
[15] Kim I J, Ko K C, Kim C S, et al. Isolation and characterization of cDNAs encoding β-carotene hydroxylase in Citrus[J]. Plant Science,2001,161:1005-1010.
[16] Galpaz N, Ronen G, Khalfa Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus[J]. Plant Cell,2006,18:1947-1960.
[17] Bouvier F, Keller Y, d’Harlingue A, et al. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylase from pepper fruits (Capsicum annuum L.) [J]. Biochimica et Biophysica Acta,1998,1391:320-328.
[18] Sun Z R, Gantt E, Cunningham F X. Cloning and functional analysis of β-carotene hydroxylase of Arabidopsis thaliana[J]. Journal of Biological Chemistry,1996,271(40):24349-24352.
[19] Castillo R, Fernández J, Gómez-Gómez L. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of crocus sativus and its closer relative[J]. Plant Physiology,2005,139:674-689.
[20] Davison P A, Hunter C H, Horton P. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis[J]. Nature,2002,418:203-206.
[21] Zhao Q, Wang G, Ji J, et al. Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco[J]. Journal of Plant Biochemistry and Biotechnology,2014,23(2):190-198.
[22] Vallabhaneni R, Gallagher C E, Licciardello N, et al. Metabolite sorting of a germplasm collection reveals the Hydroxylase3 locus as a new target for maize provitamin A biofortification[J]. Plant Physiology,2009,151:1635-1645.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}