为了研究了水分胁迫对大豆叶片保护酶活性和相对含水率的影响,以3 个大豆品种‘黑农57’、‘改良168’、‘绥农26’为材料,采用盆栽控水试验,设置中度干旱、重度干旱和适宜水分处理。结果显示:(1)在适宜水分条件下,叶片超氧化物歧化酶(SOD)和过氧化物酶(POD)活性表现为先增加后降低的趋势,过氧化氢酶(CAT)活性和相对电导率表现为降低的趋势。(2)各时期SOD和CAT活性为中度胁迫>重度胁迫>适宜水分,差异显著;各时期POD活性和苗期-盛花期的相对电导率为重度胁迫>中度胁迫>适宜水分,差异显著。(3)在干旱胁迫条件下,POD活性和SOD活性,‘黑农57’>‘改良168’>‘绥农26’;CAT活性品种间差异不显著。综上,在干旱胁迫下,春大豆叶片保护酶活性和相对电导率比在适宜水分下活性要高,体现了春大豆对干旱环境的自我调节能力。
Abstract
To study the effects of water stress on the protective enzymes activity and relative water content of soybean leaves, three soybean varieties,‘Heinong 57’,‘Improved 168’and‘Suinong 26’, are used in pot water control experiment. Moderate drought, severe drought and suitable moisture treatment are set up. The results showed that: (1) the activity of superoxide dismutase and peroxidase increased first and then decreased under suitable water condition, and the catalase activity and relative conductivity decreased; (2) the activities of superoxide dismutase and catalase were as follows: moderate drought>severe drought>suitable moisture, and the differences were significant, the peroxidase activity in each period and relative conductivity at seedlingflowering stage were as follows: severe stress > moderate stress > suitable water, and the differences were also obvious. (3) Under drought stress, the activities of peroxidase and superoxide dismutase were as follows: ‘Heinong 57’>‘Improved 168’>‘Suinong 26’, the catalase activity among varieties had no significant difference. In conclusion, under drought stress, the activity of protective enzymes and relative conductivity in
spring soybean leaves are higher than that under suitable water condition, reflecting the self-regulation ability of spring soybean to drought environment.
关键词
春大豆;干旱胁迫;超氧化物歧化酶;过氧化物酶;相对电导率
{{custom_keyword}} /
Key words
spring soybean; drought stress; superoxide dismutase; peroxidase; relative conductivity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]孙醒东.大豆[M].北京:科学出版社,1956,30-35.
[2]崔振才.大豆耗水规律与产量和品质关系的研究[D].东北农业大学,2003.
[3] 左文博,吴静利,杨奇等. 干旱胁迫对小麦根系活力和可溶性糖含量的影响[J].华北农学报, 2010, 25(6): 191-193.
[4] 王磊,胡楠,张彤等.干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响[J].生态学报, 2007, 27(9): 3630-3636.
王敏, 张从宇, 马同富. 大豆品种苗期抗旱性研究[J] . 中国油料作物学报, 2004, 26( 3) : 29- 32.
韩永华. 水分胁迫对大豆幼苗叶片细胞质膜的影响[J] . 广西师范大学学报, 1999, 17( 4) : 85- 87.
徐亚会,董守坤,李雪凝等.干旱胁迫对春大豆氮代谢关键酶活性的影响[J].核农学报, 2016, 30(1) : 0164-0170.
董守坤, 赵坤, 刘丽君等. 干旱胁迫对春大豆叶绿素含量和根系活力的影响[J]. 大豆科学, 2011, 30(6):949-953.
董守坤, 李雪凝, 赵坤等. 干旱胁迫对春大豆根系保护酶活性的影响[J]. 作物杂志, 2015(2):163-165.
[10] 张宪政.作物生理研究法[M].北京:农业出版社,1992.
[11]李合生.植物生理生化实验原理和技术[M].北京: 高等教育出版社,2000:164-165,260-261.
周宁. 野生大豆过氧化物歧化酶(SOD)基因的克隆与序列分析[D]. 吉林农业大学, 2012.
张艳馥, 沙伟, 任艳波等. 水胁迫对大豆幼苗POD同工酶的影响[J]. 种子, 2014, 33(1):75-76.
赵坤, 董守坤, 刘丽君等. 干旱胁迫对春大豆开花期根系生理特性的影响[J]. 大豆科学, 2010, 29(3):437-439.
高鑫宇, 刘丽君, 刘博等. PEG模拟干旱对大豆抗氧化酶活性及抗氧化能力的影响[J]. 大豆科学, 2016, 35(4):616-619.
莫红,翟兴礼. 干旱胁迫对大豆苗期生理生化特性的影响[J].湖北农业科学,2007,46(1):45-48.
王启明. 干旱胁迫对大豆苗期叶片保护酶活性和膜脂过氧化作用的影响[J]. 农业环境科学学报, 2006, 25(4):1528-1530.
董雅致, 徐克章, 李大勇等. 不同氮素光合效率大豆品种叶片保护酶活性对施氮水平的响应[J]. 吉林农业大学学报, 2015, 37(4):395-401.
刘瑞显, 郭文琦, 陈兵林, 周治国. 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J]. 作物学报, 2008, 34(9):1598-1607.
钟鹏, 朱占林, 李志刚, 王建丽, 张玉玲. 干旱和低磷胁迫对大豆叶保护酶活性的影响[J]. 中国农学通报, 2005, 21(2):153-154.
马原松, 王启明, 吴诗光, 徐心诚. 干旱胁迫下大豆苗期生理生化指标的研究[J]. 安徽农业科学, 2005, 33(6):974-976.
王启明, 李方远, 徐心诚, 吴诗光. 干旱胁迫对花荚期大豆叶片细胞膜透性和渗透调节物质含量的影响[J]. 河南农业科学, 2005, 34(8):000039-42.
徐新娟, 李勇超. 2种植物相对电导率测定方法比较[J]. 江苏农业科学, 2014, 42(7):311-312.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}