患根肿病的上海青根内生菌组成和结构的研究

雷少楠,程志强,熊娟,马荣琴,田宝玉

中国农学通报. 2017, 33(33): 39-45

中国农学通报 ›› 2017, Vol. 33 ›› Issue (33) : 39-45. DOI: 10.11924/j.issn.1000-6850.casb17070136
生物技术科学

患根肿病的上海青根内生菌组成和结构的研究

  • 雷少楠,程志强,熊娟,马荣琴,田宝玉
作者信息 +

Composition and Structure of Root Endophyte in Brassica chinensis L. Infected by Clubroot

Author information +
History +

摘要

旨在优化植物根内生菌高通量测序分析技术,更好地解析健康与患根肿病上海青根内生菌之间的差异。采用高通量测序方法,对其16S rDNA的V3-V4 区进行扩增,并通过合适的软件和数据库进行菌群分析。结果表明,植物内生菌受植物叶绿体DNA的干扰大,平均叶绿体数据占67%。上海青根内生微生物菌群具有丰富的多样性,主要由变形菌门、放线菌门、拟杆菌门和厚壁菌门细菌组成,优势种群为假单胞菌,根瘤菌,芽孢杆菌,以及链霉菌等。健康样品的稳定性较好,不同患根肿病样品之间菌群比例差异较大。研究显示,根肿病侵染对上海青根内生菌群的结构和组成有较为显著的影响。

Abstract

The study aims to optimize high- throughput sequencing analysis techniques of vegetable root endophytes and get a better understanding of the difference in root endophytic bacteria between healthy and clubroot-infected Brassica chinensis L.. The V3-V4 region of 16S rDNA was amplified by high-throughput sequencing method and the data was analyzed by appropriate software and databases. The results showed that the plant endophytes were disturbed by chloroplast DNA severely, the average chloroplast data accounted for 67%. B. chinensis root endophytes had rich diversity, and Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were primary endophytic groups. The dominant endophytic groups were Pseudomonas, Rhizobium, Bacillus, and Streptomyces. The stability of healthy samples was better than clubroot-infected samples, and the difference of clubroot- infected samples was significant. The study indicated that clubroot infection had a significant effect on the structure and composition of B. chinensis root endophytic bacteria.

关键词

上海青;根内生菌群;宏基因组学;分析方法

Key words

Brassica chinensis L.; root endophytes; clubroot disease; metagenomics; analytical method

引用本文

导出引用
雷少楠,程志强,熊娟,马荣琴,田宝玉. 患根肿病的上海青根内生菌组成和结构的研究. 中国农学通报. 2017, 33(33): 39-45 https://doi.org/10.11924/j.issn.1000-6850.casb17070136
Composition and Structure of Root Endophyte in Brassica chinensis L. Infected by Clubroot. Chinese Agricultural Science Bulletin. 2017, 33(33): 39-45 https://doi.org/10.11924/j.issn.1000-6850.casb17070136

参考文献

[1] 刘邮洲, 杜艳, 乔俊卿, 等. 甘蓝根肿病生防细菌的筛选、鉴定及评价[J]. 南京农业大学学报, 2014, 37(4): 83-90.
[2] 王秋, 王成云, 牟岩松. 白菜根肿病的发生与防治[J]. 现代农业科技, 2015 (12): 129-130.
[3] 李妍, 谢学文, 石延霞, 等. 防治上海青根肿病的药剂筛选[J]. 农药学学报, 2010, 12(1): 93-96.
[4] 王靖, 黄云, 李小兰, 等. 十字花科根肿病研究进展[J]. 植物保护, 2011, 37(6): 153-158.
[5] Malfanova NV. Endophytic bacteria with plant growth promoting and biocontrol abilities[D]. Institute Biology of Leiden (IBL), Faculty of Science, Leiden University, 2013.
[6] Pavlo A, Leonid O, Iryna Z, et al. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.)[J]. Biological Control, 2011, 56(1): 43-49.
[7] Tholozan JL, Cappelier JM, Tissier JP, et al. Physiological Characterization of Viable-but-Nonculturable Campylobacter jejuni Cells[J]. Applied and Environmental Microbiology, 1999, 65(3): 1110-1116.
[8] Lundberg DS, Lebeis SL, Paredes SH, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409): 86-90.
[9] Peiffer JA, Spor A, Koren O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences, 2013, 110(16): 6548-6553.
[10] Knief C. 2014. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci. 5:216.
[11] Tian BY, Cao Y, Zhang KQ. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots[J]. Scientific Reports, 2015, 5: 17087.
[12] Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils: old bias for new microbial diversity analysis methods[J]. Applied and Environmental Microbiology, 2001, 67(5): 2354-2359.
[13] Mago? T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
[14] Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.
[15] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
[16] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
[17] Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[J]. Nucleic Acids Research, 2007, 35(21): 7188-7196.
[18] DeSantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069-5072.
[19] 刘波, 王阶平, 陈倩倩, 等. 养猪发酵床微生物宏基因组基本分析方法[J]. 福建农业学报, 2016, 31(6): 630-648.
[20] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4): 445-457.
[21]刘莉扬, 崔鸿飞, 田埂. 高通量测序技术在宏基因组学中的应用[J]. 中国医药生物技术, 2013, 8(3): 196-200.

文章所在专题

棉花

Accesses

Citation

Detail

段落导航
相关文章

/