为全面调查森林生态系统各层次降水水质状况,于2013年9月至2014年8月对重庆市缙云山常绿阔叶林大气降雨、林内降雨、地表径流、土壤渗滤液进行了持续一年的水质效应研究。实验结果表明:缙云山全年大气降雨明显偏酸性(pH=4.75);土壤层和林冠层均能调升降雨的pH值,其中土壤层对pH值的调升幅度最大,其次为森林冠层;森林林冠层对NO3-、NO2-、Na有一定的吸附净化作用,降雨能够淋溶森林林冠层的NH4、SO42-、PO43-、Mg2 、Ca2 、K;另外,枯枝落叶的降解导致构成植物组织的有机物降解为无机物进而促使各离子浓度在地表径流中增加;森林土壤中的官能团以及胶体能够吸附中和渗滤液中的NO3-、SO42-、NH4、PO43-、K、Mg2 ,同时长期处于酸性条件下的土壤层也释放出了部分Na、NO2-、PO43-、Ca2 ;重金属铅(Pb)、镉(Cd)在该区域大气降雨中的含量较高,经过森林冠层后表现出大幅下降的趋势,说明森林冠层对有害重金属Pb、Cd有较强的拦截净化作用,且该林分对降水中有害重金属的截留净化能力比同地区其他林分较强。
Abstract
To investigate water quality at different levels of subtropical forest ecosystem, we studied water quality effect of precipitation through fall, runoff and soil leachate of evergreen broad-leaved forest in Jinyun Mountain, Chongqing from September 2013 to August 2014. The results showed that: the precipitation of Jinyun Mountain was obviously acidic (pH 4.75); the soil and canopy could elevate the pH value of precipitation, and the soil layer had the biggest up-grading of the pH value, followed by forest canopy; forest canopy layer had certain adsorption effect on NO3-、NO2- and Na+, the NH4+、SO42-, PO43-, Mg2+, Ca2+ and K+ on forest canopy could be leached by precipitation; in addition, the inorganic and organic matter produced by the litter degradation increased ion concentration in surface runoff; functional group and colloid in forest soil could adsorb and neutralize NO3-, SO42-, NH4+, PO43-, K+, Mg2+ in leachate; at the same time, forest soil under acidic condition for a long term could release part of the Na+, NO2-, PO43- and Ca2+; the contents of heavy metal lead (Pb) and cadmium (Cd) were relatively high in the atmospheric rainfall in the area, but showed a dramatic drop after going through the forest canopy, indicating that the forest canopy had stronger intercept purification effect on heavy metals such as Pb and Cd.
关键词
中亚热带;森林生态系统;水质;层次
{{custom_keyword}} /
Key words
mid-subtropical zone; forest ecosystem; water quality; level
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙涛, 马明, 王定勇. 中亚热带典型林分不同层次氮硫湿沉降动态变化[J]. 环境科学, 2014, 35(12): 4475-4481.
[2] 孙涛, 马明, 王定勇. 中亚热带典型森林生态系统对降水中铅镉的截留特征[J]. 生态学报, 2016, 36(1): 218-225.
[3] 张胜利, 李光录. 秦岭火地塘森林生态系统不同层次的水质效应[J]. 生态学报, 2007, 27(5): 1838-1844.
[4] Ma M, Wang D, Du H, et al. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China[J]. Environmental Science and Pollution Research, 2015, 22(24): 20007-20018.
[5] Ma M, Wang D, Du H, et al. Mercury dynamics and mass balance in a subtropical forest, southwestern China[J]. Atmospheric Chemistry and Physics, 2016, 16(7): 4529-4537.
[6] Potter C S, Ragsdale H L, Swank W T. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy[J]. Journal of Ecology, 1991, 79(1): 97-115.
[7] 周光益, 徐义刚, 吴仲民. 广州市酸雨对不同森林冠层淋溶规律的研究[J]. 林业科学研究, 2000, 13(6): 598-607.
[8] 赵喆. 论我国森林资源的利用与保护对策[J]. 天津科技, 2012, (4): 35-36.
[9] 彭岚, 何祖威. 重庆能源工业可持续发展的思考[J]. 重庆大学学报, 2002, 25(8): 120-124.
[10] 陶大钧, 张信华. 酸性降雨的物理和化学性质研究[J]. 环境污染与防治, 1989, (1): 26-28.
[11] Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N?-fixing bacteria in an acid soil of a Norway spruce forest[J]. Plant and Soil, 2001, 230(1): 145-160.
[12] Balestrini R, Tagliaferri A. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)[J]. Atmospheric Environment, 2001, 35(36): 6421-6433.
[13] Polkowska ?, Astel A, Walna B, et al. Chemometric analysis of rainwater and throughfall at several sites in Poland[J]. Atmospheric Environment, 2005, 39(5): 837-855.
[14] Neal C, Reynolds B, Neal M, et al. Soluble reactive phosphorus levels in rainfall, cloud water, throughfall, stemflow, soil waters, stream waters and groundwaters for the Upper River Severn area, Plynlimon, mid Wales[J]. Science of the Total Environment, 2003, s 314–316: 99-120.
[15] 彭培好, 王金锡. 人工桤柏混交林中降雨对养分物质的淋溶影响[J]. 生态学杂志, 1996, (5): 12-15.
[16] Talkner U, Kr?mer I, H?lscher D, et al. Deposition and canopy exchange processes in central-German beech forests differing in tree species diversity[J]. Plant and Soil, 2010, 336(1): 405-420.
[17] Burbanogarcés M L, Figueroacasas A, Pe?a M. Bulk precipitation, throughfall and stemflow deposition of N-NH4+, N-NH3 and N-NO3- in an Andean forest[J]. Journal of Tropical Forest Science, 2014, 26(4): 446-457.
[18] Vitousek P M. Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests[J]. Ecology, 1984, 65(1): 285.
[19] Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest[J]. Plant and Soil, 2001, 230(1): 145-160.
[20] 王少平, 俞立中, 许世远. 上海青紫泥土壤氮素淋溶及其对水环境影响研究[J]. 长江流域资源与环境, 2002, 11(6): 554-558.
[21] Beale S I. Enzymes of chlorophyll biosynthesis[J]. Photosynthesis Research, 1999, 60(1): 43-73.
[22] 唐先干, 杨金玲, 张甘霖. 皖南山区降水酸性特征与元素沉降通量[J]. 环境科学, 2009, 30(2): 356-361.
[23] 安思危, 孙涛, 马明. 中亚热带常绿阔叶林湿沉降过程中盐基离子变化特征[J]. 环境科学, 2015, 36(12): 4414-4419.
[24] 地表水环境质量标准[J]. 中国环保产业, 2002, (6): 8-9.
[25] 卫生部. 生活饮用水卫生标准[J]. 经济管理文摘, 2006, (11): 36-38.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}