6种钝化剂对糙米镉含量及镉在水稻中的转移和富集的影响

朱丹妹,刘岩,张丽,安毅,李玉浸,秦莉,霍莉莉,林大松

中国农学通报. 2017, 33(35): 94-100

中国农学通报 ›› 2017, Vol. 33 ›› Issue (35) : 94-100. DOI: 10.11924/j.issn.1000-6850.casb17020043
资源 环境 生态 土壤 气象

6种钝化剂对糙米镉含量及镉在水稻中的转移和富集的影响

  • 朱丹妹,刘岩,张丽,安毅,李玉浸,秦莉,霍莉莉,林大松
作者信息 +

6 Kinds of Amendments: Effects on Cd Content in Brown Rice and Cd Transfer and Accumulation in Rice

Author information +
History +

摘要

旨在为合理使用钝化剂及水稻糙米镉(Cd)含量与Cd在水稻体内富集和转移的关系提供一定的理论依据。从6 种钝化剂中筛选出能够抑制糙米Cd积累的材料,通过对不同超标程度水稻组的产量、糙米Cd含量、各个器官对Cd的富集系数和转移系数进行统计分析,探讨不同钝化剂对Cd在水稻体内转移和富集的影响。结果表明:与对照相比,低、中浓度C材料和FA材料能够降低糙米中Cd 浓度;FB材料和中、高浓度FD材料会促使糙米中Cd的积累。水稻各器官对Cd富集能力,无超标水稻为根>茎>米>叶>糠,超标水稻为根>茎>米>糠>叶;Cd向糙米的转移途径中,在不超标水稻组中糠—米的转移能力最强,在超标水稻组中叶—米的转移能力最强。

Abstract

The purpose of this study is to provide a basis for rational use of amendments and the relationship between the cadmium content in brown rice and the accumulation and transfer of cadmium in rice. The materials which could inhibit the cadmium accumulation in brown rice were screened from 6 kinds of amendments. Through statistical analysis of yield, cadmium content in brown rice, cadmium accumulation factors (AF) and transfer factors (TF) in different organs in different exceeding-standard rice groups, the effects of different amendments on the transfer and accumulation of cadmium in rice were discussed. The results indicated that compared with the control, the lower and middle concentration of C material and FA material could reduce the cadmium concentration in brown rice; FB material and the high concentration FD materials promoted the cadmium accumulation of brown rice. The ability of cadmium accumulation in different rice organs in no exceeding standard group followed the order: root>stem> brown rice >leaf>chaff, and in the exceeding standard group followed the order: root>stem> brown rice > chaff > leaf. The transfer ability of chaff—brown rice was the strongest in no exceeding standard group, while the transfer ability of leaf—brown rice was the strongest in exceeding standard group.

关键词

镉;水稻;钝化剂;产量;转移系数;富集系数

Key words

cadmium; rice; amendment; yield; transfer factor; accumulation factor

引用本文

导出引用
朱丹妹,刘岩,张丽,安毅,李玉浸,秦莉,霍莉莉,林大松. 6种钝化剂对糙米镉含量及镉在水稻中的转移和富集的影响. 中国农学通报. 2017, 33(35): 94-100 https://doi.org/10.11924/j.issn.1000-6850.casb17020043
6 Kinds of Amendments: Effects on Cd Content in Brown Rice and Cd Transfer and Accumulation in Rice. Chinese Agricultural Science Bulletin. 2017, 33(35): 94-100 https://doi.org/10.11924/j.issn.1000-6850.casb17020043

参考文献

[1] Ikeda M, Ezaki T, Tsukahara T, et al. Dietary cadmium intake in polluted and non-polluted areas in Japan in the past and in the present.[J]. International Archives of Occupational Environmental Health, 2004, 77(4):227-34.
[2] 吴燕玉, 陈涛, 张学询. 沈阳张士灌区镉污染生态的研究[J]. 生态学报, 1989, 9(1):21-26.
[3] Florijn P J, Beusichem M L V. Uptake and distribution of cadmium in maize inbred lines[J]. Plant and Soil, 1993, 150(1):25-32.
[4] Kurz H, Schulz R, R?mheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants[J]. Journal of Plant Nutrition and Soil Science, 1999, 162(3):323-328.
[5] Garate A, Ramos I, Manzanares M, et al. Cadmium uptake and distribution in three cultivars of Lactuca sp.[J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50(5):709-16.
[6] McLaughlin, MJ, Williams, CMJ, McKay, A, et al. Effect of cultivar on uptake of cadmium by potato tubers[J]. Australian Journal of Agricultural Research, 1994, 45(7):1483-1495.
[7] Zhang G, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat.[J]. Journal of Plant Nutrition, 2000, 23(9):1337-1350.
[8] Zhang G P, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage.[J]. Field Crops Research, 2002, 77(2):93-98.
[9] Wu F B, Zhang G. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings.[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(2):219-27.
[10] Leng X, Liu J, Wang M, et al. Notice of Retraction Uptake and Distribution of Cadmium in Different Rice Cultivars[J]. 2011, 28(12):1-4.
[11] Liu J, Li K, Xu J, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J]. Field Crops Research, 2003, 83(3):271-281.
[12] Liu J G, Liang J S, Li K Q, et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J]. Chemosphere, 2003, 52(9):1467-1473.
[13] Liu J, Zhu Q, Zhang Z, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet.[J]. Journal of the Science of Food and Agriculture, 2005, 85(1):147-153.
[14] 史静, 潘根兴, 张乃明. 镉胁迫对不同杂交水稻品种Cd、Zn吸收与积累的影响[J]. 环境科学学报, 2013, 33(10):2904-2910.
[15] Yu H, Wang J, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice.[J]. Science of the Total Environment, 2006, 370(2-3):302-9.
[16] 何俊瑜, 任艳芳, 王阳阳,等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31(2):522-528.
[17] 龙小林, 向珣朝, 徐艳芳,等. 镉胁迫下籼稻和粳稻对镉的吸收、转移和分配研究[J]. 中国水稻科学, 2014, 28(2):177-184.
[18] 莫争, 王春霞, 陈琴,等. 重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J]. 环境化学, 2002, 21(2):110-116.
[19] 蔡秋玲, 林大松, 王果,等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6):1028-1033.
[20] Bernal M, Testillano P S, Alfonso M, et al. Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter.[J]. Journal of Structural Biology, 2007, 158(1):46-58.
[21] 刘莉. 镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响[J]. 浙江农业学报. 2005(3): 147-150.
[22] 刘丽莉,冯涛,向言词,等. 外源钙对镉胁迫下芥菜型油菜幼苗生长和生理特性的影响[J]. 农业环境科学学报. 2009(5): 978-983.
[23] Liu J, Qian M, Cai G, et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain[J]. Journal of Hazardous Materials, 2007, 143(1–2):443-447.
[24] A. Jalil, F. Selles, J. M. Clarke. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat[J]. Journal of Plant Nutrition, 1994, 17(11):1839-1858.
[25] 肖美秀, 林文雄, 陈祥旭,等. 镉在水稻体内的分配规律与水稻镉耐性的关系[J]. 中国农学通报, 2006, 22(2):379-381.
[26] Nocito F F, Lancilli C, Dendena B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant Cell Environment, 2011, 34(6):994-1008.
[27] Ueno D, Koyama E, Yamaji N, et al. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.[J]. Journal of Experimental Botany, 2011, volume 62(7):2265-2272(8).
[28] Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals[J]. Current Opinion in Plant Biology, 2013, 16(3):328-334.
[29] 杨居荣, 鲍子平. 镉,铅在植物细胞内的分布及其可溶性结合形态[J]. 中国环境科学, 1993, 13(4):263-268.
[30] Kramer U, Smith R D, Wenzel W W, et al. The Role of Metal Transport and Tolerance in Nickel Hyperaccumulation by Thlaspi goesingense Halacsy.[J]. Plant Physiology, 1998, 115(4):1641-1650.
[31] V?geli-Lange R, Wagner G J. Subcellular localization of cadmium and cadmium binding peptides in tobacco leaves. Plant Physiol[J]. Plant Physiology, 1990, 92(4):1086-93.
[32] Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants.[J]. Plant Physiology, 1980, 65(3):480-2.
[33] Wan M. Subcelluar and molecular distribution of cadmium in two wheat genotypes differing in shoot/root Cd partitioning[J]. Scientia Agricultura Sinica, 2003.
[34] Küpper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.[J]. Planta, 2000, 212(1):75-84.
[35] Salt D E, Smith R D, Raskin I. PHYTOREMEDIATION[J]. Plant Biology, 1998, 49(49):643-668.
[36] Whiting S N, Leake J R, Mcgrath S P, et al. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2000, 145(2):199–210.
[37] V?geli-Lange R, Wagner G J. Subcellular localization of cadmium and cadmium binding peptides in tobacco leaves. Plant Physiol[J]. Plant Physiology, 1990, 92(4):1086-93.
[38] Strasdeit H, Duhme A K, Kneer R, et al. Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy[J]. Journal of the Chemical Society Chemical Communications, 1991, 16(16):1129-1130.
[39] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis.[J]. Planta, 2001, 212(4):475-86.
[40] Dabin P, Marafante E, Mousny J M, et al. Absorption, distribution and binding of cadmium and zinc in irrigated rice plants[J]. Plant and Soil, 1978, 50(1):329-341.
[41] Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants.[J]. Plant Physiology, 1980, 65(3):480-2.
[42] 文志琦, 赵艳玲, 崔冠男,等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报, 2015(8):1280-1286.
[43] Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil, 2011, 347(1):105-114.
[44] Cutler J M, Rains D W. Characterization of cadmium uptake by plant tissue.[J]. Plant Physiology, 1974, 54(1):67-71.
[45] Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance ofAthyrium yokoscense[J]. Plant and Soil, 1987, 101(1):15-20.
[46] C Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants.[J]. Plant Physiology, 1983, 73(3):844-8.

Accesses

Citation

Detail

段落导航
相关文章

/