为分析柴达木盆地经济作物藜麦的种植区划,本研究运用气候统计方法,对柴达木盆地1981—2015年11个观测站地表(0cm)温度进行统计分析。结果表明:近35年整个盆地、西部、东部两分区年平均地表温度分别为6.9、7.8、5.8℃;气候倾向率分别为0.70℃/10 a、0.71℃/10 a、0.69℃/10a,均通过0.001以上水平的显著检验。整个盆地、西部、东部地表年平均最高温度分别为34.0、36.3、31.3℃,气候倾向率分别为0.63℃/10 a、0.85℃/10 a、0.36℃/10 a,西部为东部的2.36倍;地表年平均最低温度值基本相等。大柴旦和天峻为西部和东部两分区的低值区,分别为-8.4、-9.7℃。地表平均温度的增温幅度在整个盆地表现为春季最大,冬季最小;西部的夏季最大,冬季最小;东部的春季最大,夏季最小。虽各区的增温幅度不同,但均通过0.05水平的显著性检验。盆地及分区的地表温度变化呈单峰型,7月达到最高值,1月为全年最低值。地表温度的变化与气温呈明显的正相关关系,与其他因子的相关性较小或呈负相关,故盆地地表温度的显著升高在很大程度受气温的明显影响。
Abstract
To study the planting structure of quinoa in Qaidam Basin, the authors used climate statistical method to analyze the surface temperature (0 cm) of 11 observation stations in the Qaidam Basin from 1981 to 2015. The results showed that in the past 35 years, the annual average surface temperature of the whole basin, the west and the east was 6.9, 7.8, 5.8℃, respectively; the climate tendency rate was 0.70℃/10 a, 0.71℃/10 a, 0.69℃/10 a, respectively, which all passed the 0.001 level of the significant test; the average annual maximum temperature of the whole basin, the west and the east was 34.0, 36.3, 31.3℃, respectively, the climate tendency rate was 0.63℃/10 a, 0.85℃/10 a, 0.36℃/10 a, respectively, the climate tendency rate in the west was 2.36 times as much as that of the east; the average annual minimum temperature of the surface was basically equal. Dachaidan and Tianjun were the low- value areas in the west and the east, with - 8.4℃ and - 9.7℃ , respectively; the increased average surface temperature in the whole basin was the largest in spring, and the lowest in winter; while the increased average surface temperature in the west was the maximum in summer and the minimum in winter; and that in the east was the maximum in spring and the minimum in summer. Although the areas had different increased rate, they all passed the significance test with 0.05 level. The change of the surface temperature in the basin and subarea showed a single peak, and the highest value appeared in July and the lowest value in January. The change of surface temperature had a positive correlation with air temperature, and its correlation with other factors was small or negative. Therefore, the significant increase of surface temperature of the basin was obviously affected by air temperature.
关键词
地表温度;气候变化;柴达木盆地
{{custom_keyword}} /
Key words
surface temperature; climate change; Qaidam Basin
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王曼燕,吕达仁.GMS5反演中国几类典型下垫面晴空地表温度的日变化及季节变化[J].气象学报,2005,63(6):957-968.
[2] 周刊社,陈华,卓嘎.近43年西藏高原20cm地温对气温和降水变化的响应[J].中国农学通报,2015,31(35):209-216.
[3]王胜,郭海瑛.祁连山西缘戈壁过渡带地表温度对气候变化的响应[J].兰州大学学报(自然科学版),2013,49(3):332-336.
[4] 李琳琳,李国春,王莹,等.应用FY-3MERSI数据反演地表温度[J].中国农学通报,2015,31(22):223-229.
[5] 李峰,曹张驰,赵红,等.基于FY -3/VIRR数据的山东省地表温度反演及应用研究[J].中国农学通报,2015,31(28):195-200.
[6] 建军,余锦华,达琼.近30年青藏高原年平均0 cm地温的分布和变化特征[J].气象,2006,32(12):64-69.
[7] 李栋梁,钟海玲,吴青柏,等.青藏高原地表温度的变化分析[J].高原气象,2005,24(3):291-298.
[8] 杜军,胡军,罗布次仁,等.西藏浅层地温对气候变暖的响应[J].冰川冻土,2008,30(5):745-751.
[9] 张焕平,张占峰,汪青春,等.近40年青海浅层地温的变化特征[J].中国农业气象,2013,34(2):146-152.
[10] 何冬燕,田红,邓伟涛.青藏高原不同季节地表温度变化特征分析[J].南京信息工程大学学报:自然科学,2014,6(6):558-569.
[11]王发科,郭晓宁,李兵.格尔木盆区浅层地温对气候变化的响应[J].青海科技,2009, 4:32-34.
[12] 申元村.柴达木盆地自然环境基本特征与农业可持续发展体系建设[J].干旱区资源与环境,1998,12(4):1-3.
[13] 李晓明,孙海松.柴达木盆地草地类型及其分布规律[J].草业与畜牧,2011,192 (11):19-22 .
[14]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.
[15] 李林,申红艳,李红梅,等.柴达木盆地气候变化的区域显著性及其成因研究[J]自然资源学报,21051,30 (4):641-650.
[16]丁文魁,殷玉春,杨晓玲,等.河西走廊东部地表温度的变化趋势及特征分析[J]干旱区研究,2014,31(6)
[17] 乔丽,吴林荣,张高健.中国近50 a地表温度时空变化特征分析[J]水土保持通报,2015,35 (5):321-326.
[18] 汪青春,白彦芳.青海省近40年来的旱涝变化研究[J].青海气象,2000,3:15-22.
[19] 黄芳芳,马伟强,李茂善,等.藏北高原地表温度对气候变化响应的初步分析[J].高原气象,2016,35(1):55-63.
[20] 张忠琼,吴青柏,刘永智,等.多年冻土区典型地面浅层地温对降水的响应[J].工程地质学报,2015,23(5):948-953.
[21] 尹成明,李伟民,Andrea R,等.柴达木盆地新生代以来的气候变化研究:来自碳氧同位素的证据[J].吉林大学学报:地球科学版,2007,37(5):901-907.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}