为探究桑树品种间重金属镉的分布与富集规律,选择‘农桑14号’、‘强桑1号’、‘粤桑11号’3个桑品种,并设置15000株/hm2、30000株/hm2、45000株/hm2的栽植密度在镉超标农田上开展试验。根据样品检测与统计分析的结果得出:从土壤中吸收的镉50%左右分布在桑树根部,其次为分枝、主茎和叶,桑树品种与栽植密度及其互作对各取样部位(除桑叶外)的镉总量均有显著影响。在镉含量为2.93 mg/kg的农田中,15000株/hm2栽植模式下的‘粤桑11号’品种富集镉能力最强。桑树对镉的富集系数为0.107,桑树对镉的转移系数为0.243,两者均不受桑树品种与栽植密度及其互作的影响。
Abstract
In order to identify the distribution and enrichment regularity of cadmium among different mulberry varieties, ‘Nongsang 14’, ‘Qiangsang 1’ and ‘Yuesang 11’ were planted on cadmium-excessive farmlands with the density of 15000, 30000 and 45000 plants/hm2. According to the results of sample testing and statistical analysis, about 50% of the cadmium absorbed from the soil was distributed in mulberry root, followed by that in branches, stems and leaves, respectively. The cadmium distribution in the sampling parts (except for the leaves) was significantly affected by the mulberry variety, planting density and their interaction. ‘Yuesang 11’ planted on the farmland with cadmium concentration of 2.93 mg/kg and planting density of 15000 plants/hm2 had the strongest enrichment capability. In addition, the cadmium enrichment coefficient (EC) of mulberry was 0.107, and the cadmium transfer factor (TF) of mulberry was 0.243, both were insusceptible to the mulberry variety, planting density and their interaction.
关键词
桑树品种;栽植密度;镉超标农田;镉的分布;富集规律
{{custom_keyword}} /
Key words
mulberry variety; planting density; cadmium exceeded farmland; cadmium distribution; enrichment regularity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007,27(6):881-893.
[2] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
[3] 何启贤.镉超富集植物筛选研究进展[J].环境保护与循环经济,2013(1):46-49.
[4] 陈朝明,龚惠群,王凯荣.Cd对桑叶品种、生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):417-423.
[5] 颜新培,龚昕,黄仁志等.镉铅超标农田养蚕试验分析[J].湖南农业科学,2014(22):34-36.
[6] 陈朝明,龚惠群,王凯荣等.桑-蚕系统中镉的吸收、累积与迁移[J].生态学报,1999,19(5):664-669.
[7] 余玮,揭雨成,刑虎成,等.不同程度污染农田苎麻吸收积累镉特性研究进展[J].中国农学通报,2012,28(14):275-279.
[8] 杨珍平,郝教敏,卜玉山,等.Cd胁迫对5种植物体内Cd积累及根际土壤特性的影响[J].水土保持学报,2011,25(6):186-192.
[9] 熊善高,丁晓,李洪远.植物修复技术选择的考虑因素概要[J].环境科学与管理,2012,37(12):142-149.
[10] 明道绪.生物统计附试验设计(第三版)[M].北京:中国农业出版社,2007.
[11] David E S, Michael B, Nanda P B A, et al. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants[J].Biotechnology,1995(13):468-474.
[12] Stanley R, Gabriel A, Harry S, et al. Phytoremediation: An Eco-Friendly and Sustainable Method of Heavy Metal Removal from Closed Mine Environment in Papua New Guinea[J].Procedia Earth and Planetary Science,2013(6):269-277.
[13] 蒋诗梦,颜新培,龚昕,等.镉铅超标农田秋季养蚕试验分析[J].北方蚕业,2015,36(1):15-21.
[14] 朱光旭,黄道友,朱奇宏,等.苎麻镉耐受性及其修复镉污染土壤潜力研究[J].农业现代化研究,2009,30(6):752-755.
[15] 杨伟华,王延琴,周大云,等.植棉修复重金属污染土壤研究进展[J].湖南农业科学,2014(18):41-44.
[16] 张富运,陈永华,吴晓芙,等.铅锌超富集植物及耐性植物筛选研究进展[J].中南林业科技大学学报,2012,32(12):92-96.
[17] 刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
[18] 魏树和,周启星,王新,等.一种新发现的镉超级累植物龙葵(Solanum nigrum L)[J].科学通报,2004,49(24):2568-2573.
[19] 刘周莉,何兴元,陈玮.忍冬——一种新发现的镉超富集植物[J].生态环境学报,2013,22(4):666-670.
[20] 郑宏艳,姚秀荣,侯彦林,等.中国土壤模式-作物系统重金属生物富集模型建立[J].农业环境科学学报,2015,34(2):257-265.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}