NPR在SA信号通路中的研究进展

乔禹,丁国华

中国农学通报. 2016, 32(8): 37-43

PDF(1316 KB)
PDF(1316 KB)
中国农学通报 ›› 2016, Vol. 32 ›› Issue (8) : 37-43. DOI: 10.11924/j.issn.1000-6850.casb15100117
生物技术科学

NPR在SA信号通路中的研究进展

  • 乔禹1,丁国华1,2
作者信息 +

Research Progress of NPR in SA Signaling Pathways

  • Qiao Yu1, Ding Guohua1,2
Author information +
History +

摘要

长期以来,水杨酸(SA)被认为是植物的内源信号分子,并与植物体内的多种抗性相关。病程相关基因非表达子(NPR)是SA信号通路中的关键性因子,能够介导该信号转导途径的顺利进行。为了详尽地阐述近年来多项研究对NPR研究的进展,本研究在分子水平上介绍了NPR的研究起源、SA受体,归纳了NPR1与其旁系同源物NPR3和NPR4之间相互协调的关系,分析了SA信号通路与SA提高植物抗性的机制。指出在多种植物体内,虽然NPR在SA信号通路中扮演着不可或缺的角色,但是由SA所诱导的植物抗病机制是一个复杂、精密的网络,现有的生物分子技术仍然无法使NPR的作用完全透明化。而且,在不同的植物体和相同植物的不同部位中,各种信号的转导方式也未必相同。因此,需要通过进一步确认整个信号通路中各组分及其功能、对模式植物进行详细研究来使该过程完整化。

Abstract

For a long time, salicylic acid (SA) is regarded as an endogenous signaling molecule and associated with several resistances in plants. NPR is the key factor in SA signaling pathways that can mediate the signal transduction pathways smoothly. In order to illustrate the research progress of NPR in recent years clearly, this paper introduced NPR origin and SA receptors, concluded coordinating relationship between NPR1 and its paralogs NPR3/NPR4, analyzed the mechanism of both SA signaling pathways and SA for improving resistances in plants as well. The authors concluded that even though the NPR played a significant role in SA signaling pathways, the mechanisms of plant resistance induced by SA was a sophisticated and complex network, the existing biomolecular techniques could not make function of NPR totally transparency. Moreover, transduction of various molecular was not the same in different plants or different parts of the same plant. Thus, all components with their function in this process should be further confirmed, and the integrated process also should be based on a detailed study of model plant.

关键词

NPR;SA信号通路;SAR;植物抗性

Key words

NPR; SA signaling pathways; SAR; plant resistance

引用本文

导出引用
乔禹,丁国华. NPR在SA信号通路中的研究进展. 中国农学通报. 2016, 32(8): 37-43 https://doi.org/10.11924/j.issn.1000-6850.casb15100117
Qiao Yu and Ding Guohua. Research Progress of NPR in SA Signaling Pathways. Chinese Agricultural Science Bulletin. 2016, 32(8): 37-43 https://doi.org/10.11924/j.issn.1000-6850.casb15100117

参考文献

[1] 孟雪娇.水杨酸在植物体内的生理作用研究进展[J].中国农学通报, 2010,26(15):207-214.
[2] Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [J]. Science, 1993,262(5141): 1883-1886.
[3] Pajerowska-Mukhtar K M, Emerine D K, Mukhtar M S. Tell me more: roles of NPRs in plant immunity [J]. Cell, 2013,18(7):402-411.
[4] Cao H, Bowling S A, Gordon S, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance [J]. Plant Cell, 1994,6(11):1583-1592.
[5] Cao H, Glazebrook J, Clarke J D, et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J]. Cell, 1997,88(1):57-63.
[6] Liu G, Holub E B, Alonso J M, et al. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance [J]. The Plant Journal, 2005, 41(2):304-318.
[7] Zhang Y, Cheng Y T, Qu N, et al. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs [J]. Plant Journal, 2006, 48(5):647-656.
[8] Delaney T P, Friedrich L, Ryals J A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(14):6602-6606.
[9] Michaely P, Bennet V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition [J]. Trends in Cell Biology, 1992,2(5):127-129.
[10] Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally [J]? Proteins, 1993,17(4):363-373.
[11] Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(11):6531-6536.
[12] Mou Z L, Fan W H, Dong X N. Inducers of plant systemic acquired resistance regulated NPR1 function through redox changes [J]. Cell, 2003,113(7):935-944.
[13] 李惠敏,吕建珍,覃屏生,等. NPR1基因研究进展[J].广西师范大学学报, 2003,21(3):67-71.
[14] Kaltdorf M, Naseem M. How many salicylic acid receptors does a plant need[J]? Science Signaling, 2013, 6(279): jc3.
[15] Zhang Y, Fan W, Kinkema M, et al. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(11):6523-6528.
[16] 张红志,蔡新忠.病程相关基因非表达子1(NPR1):植物抗病信号网络中的关键节点[J]. 生物工程学报, 2005,21(4):512-515.
[17] Lebel E, Heifetz P, Thorne L, et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis [J]. The Plant Journal, 1998,16(2):223-233.
[18] 李占杰,师金鸽,杨铁钊.水杨酸介导的植物系统获得抗性信号的传导途径[J]. 中国农学通报,2006,22(12):84-89.
[19] Park S W, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance [J]. Science, 2007, 318(5847): 113-116.
[20] Kumar D, Gustafsson C, Klessig D F. Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants [J]. The Plant Journal, 2006, 45(5): 863-868.
[21] Vlot A C, Dempsey D, Klessig D F. Salicylic acid, a multifaceted hormone to combat disease [J]. Annual Review of the Phytopathology, 2009, 47: 177-206.
[22] Fu Z Q, Yan S, Saleh A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants [J]. Nature, 2012, 486(7402): 228-232.
[23] Moreau M, Tian M, Klessig D F. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses [J]. Cell Research, 2012, 22(12): 1631-1633.
[24] Wu Y, Zhang D, Chu J Y, et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid [J]. Cell Reports1, 2012, 1(6): 639-647.
[25] Dong X. NPR1, all things considered [J]. Current Opinion in Plant Biology, 2004, 7(5):547-552.
[26] Spoel S H, Mou Z, Tada Y, et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity[J]. Cell, 2009, 137(5): 860-872.
[27] Chen Z, Klessig D F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response [J]. Proceedings of the National Academy of Sciences, 1991, 88(18): 8179-8183.
[28] Alvarez M E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance [J]. Plant Molecular Biology, 2000, 44(3): 429-442.
[29] Chen Z, Ricigliano J W, Klessig D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco [J]. Proceedings of the National Academy of Sciences, 1993, 90(20): 9533-9537.
[30] 高琪昕,胡新喜,王欢妍,等.水杨酸诱导植物抗病性机制的研究进展[J].中国马铃薯, 2014, 28(4): 238-242.
[31] 范文艳,姜述君.植物抗病性及抗病信号转导的研究进展[J].中国农学通报,2005, 21(2):249-252.
[32] 王文艳,岳林许,张演义,等.葡萄SA和JA信号转导重要基因克隆及其对外源信号应答分析[J].园艺学报,2012,39(5):817-827.
[33] 汤丽川.小麦SA/JA信号路径中白粉病抗性相关基因筛选及功能研究[D].郑州:河南工业大学, 2012.
[34] 孔令楠.铝胁迫下过氧化氢对大豆耐铝性的调控及其与水杨酸信号互作关系的研究[D].长春:吉林大学, 2013.
[35] 周万海,师尚礼,寇江涛.外源水杨酸对苜蓿幼苗盐胁迫的缓解效应[J].草业学报, 2012, 21(3):171-176.
[36] 张林青.水杨酸对盐胁迫下番茄幼苗生理指标的影响[J].北方园艺, 2011,2(1): 36-38.
[37] 刘艳,陈贵林,李晓燕,等.水杨酸对水分胁迫下草莓幼苗膜脂过氧化的影响[J]. 2010, 25(5):127-131.
[38] 张颖.植物NPR1及NPR1-like基因的克隆与功能分析[D] 泰安:山东农业大学,2008.
[39] Khan M I R., Khan N A. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism [J]. Protoplasma, 2014, 251(5): 1007-1019.
[40] Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Frontiers in Plant Science, 2014, 5:4.
[41] Asgher M, Khan M I R, Anjum N A, et al. Minimizing toxicity of cadmium in plants-role of plant growth regulators [J]. Protoplasma, 2015, 252(2): 399-413.
[42] Jumali S S, Said I M, Ismail I, et al. Genes induced by high concentration of salicylic acid in ‘Mitragyna speciosa’ [J]. Australian Journal of Crop Science, 2011, 5269-5303.
[43] Chai J, Liu J, Zhou J, et al. Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid [J]. Journal of Experimental Botany, 2014, 65(22): 6513-6528.
[44] Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression [J]. Frontiers in Plant Science, 2015, 6:171.
[45] 周峰.植物防御反应及其光信号调控途径[J].北方园艺, 2015(17): 179-182.
[46] 周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展, 2007, 17(3): 305-312.
[47] 余迪求,岑川,李宝健,等.植物系统获得的抗病性和信号传导[J].植物学报,1999, 41(2):115-124.
[48] 高丽娟,张玉星.水杨酸对梨SOD、PPO同工酶和NPR1表达的影响[J].园艺学报,2012,40(1):41-48.
[49] 唐艳萍,文涛,孙歆,等.水杨酸对植物光合作用影响的研究进展[J].西北植物学报, 2015,35(8): 1701-1708.
[50] Blanco F, Salinas P, Cecchini N M, et al. Early genomic responses to salicylic acid in Arabidopsis[J]. Plant Molecular Biology, 2009, 70(1-2): 79-102.
PDF(1316 KB)

文章所在专题

马铃薯

Accesses

Citation

Detail

段落导航
相关文章

/