大清河摇蚊幼虫群落结构特征及水质初步评价

仲嘉,王卫民,单保庆,肖爽,张大龙,王炬光,詹凡玢,李军涛,黎洁

中国农学通报. 2015, 31(32): 106-116

PDF(1742 KB)
PDF(1742 KB)
中国农学通报 ›› 2015, Vol. 31 ›› Issue (32) : 106-116. DOI: 10.11924/j.issn.1000-6850.casb15060094
资源 环境 生态 土壤 气象

大清河摇蚊幼虫群落结构特征及水质初步评价

  • 仲嘉1,王卫民1,单保庆2,肖爽1,张大龙1,王炬光1,詹凡玢1,李军涛1,黎洁1
作者信息 +

Community Structure of Chironomid Larvae and Bioassessment of Water Quality in Daqing River

  • Zhong Jia1, Wang Weimin1, Shan Baoqing2, Xiao Shuang1, Zhang Dalong1, Wang Juguang1, Zhan Fanbin1, Li Juntao1, Li Jie1
Author information +
History +

摘要

为了阐明大清河摇蚊幼虫群落结构特征及其与环境的关系,2013年7月和10月对大清河摇蚊幼虫群落结构特征进行了季度调查。共采集到摇蚊幼虫46种,隶属4亚科25属,优势种为苍白摇蚊(Chironomus pallidivittatus Malloch)和柔嫩雕翅摇蚊(Glyptotendipes cauliginellus Kieffer)。结果显示大清河摇蚊幼虫群落具有季节和地区差异性。摇蚊幼虫平均密度和生物量、Shannon多样性指数、Pielou均匀度指数和Simpson优势度指数均表现为夏季大于秋季。根据密度和生物量的聚类分析表明不同区域摇蚊幼虫可分属3大类。通过Margalef丰富度指数与经纬度之间的相关性分析发现,大清河摇蚊幼虫Margalef丰富度指数与经度呈负相关,与纬度无显著相关性。采用Shannon多样性指数和Hilsenhoff生物指数对大清河的水质进行了初步评价,结果表明大清河不同流域的污染等级不完全一致,水质情况比较复杂,但大部分地区已达富营养化水平,建议对其投入更多的关注和保护。

Abstract

To study the correlation between community structure of chironomid larvae and environment, community structure of chironomid larvae in Daqing River was investigated in July and October in 2013. 46 species of chironomids belonging to 25 genera and 4 subfamilies were identified. Chironomus pallidivittatus and Glyptotendipes cauliginellus were the most abundant. The results revealed that chironomid larvae community in Daqing River exhibited seasonal and regional fluctuations. The average density and biomass were higher in summer than that in autumn. Shannon diversity index, Pielou evenness index and Simpson dominance index all suggested that species diversity was higher in summer. Clustering analysis of chironomid density and biomass suggested that Daqing River could be divided into three different areas. The correlation analysis showed that Margalef abundance index had negative correlation with longitude, but had no significant correlation with latitude. Bioassessment of water quality using Shannon diversity index and Hilsenhoff biotic index showed that the water quality in Daqing River was rather complex, with inconsistent pollution levels in different areas. However, most areas of the river reached eutrophication level, indicating that immediate action was needed to control further damage to the ecosystem.

关键词

摇蚊幼虫;群落结构;多样性;水质生物评价;大清河

Key words

chironomid larvae; community structure; diversity; bioassessment of water quality; Daqing River

引用本文

导出引用
仲嘉,王卫民,单保庆,肖爽,张大龙,王炬光,詹凡玢,李军涛,黎洁. 大清河摇蚊幼虫群落结构特征及水质初步评价. 中国农学通报. 2015, 31(32): 106-116 https://doi.org/10.11924/j.issn.1000-6850.casb15060094
Zhong Jia,Wang Weimin,Shan Baoqing,Xiao Shuang,Zhang Dalong,Wang Juguang,Zhan Fanbin,Li Juntao and Li Jie. Community Structure of Chironomid Larvae and Bioassessment of Water Quality in Daqing River. Chinese Agricultural Science Bulletin. 2015, 31(32): 106-116 https://doi.org/10.11924/j.issn.1000-6850.casb15060094

参考文献

[1] 刘建康.高级水生生物学[M].北京:科学出版社,2000.
[2] Benke A C. Baldi Memorial Lecture: Concepts and patterns of invertebrate production in running waters[J]. Verhandlung der Internationale Vereinigung für theoretische und angewandte Limnologie,1993,25:15-38.
[3] Armitage P, Cranston P.S, Pinder L.C.V. The Chironomidae Biology and ecology of non-biting midges[M]. London:Chapman and Hall,1995:1-572.
[4] Brodersen K P, Lindegaard C. Significance of subfossile chironomid remains in classification of shallow lakes[J]. Hydrobiologia,1997,119(342-343):125-132.
[5] Hirabayashi K, Yoshizawa K, Yoshida N , et al. Progress of eutrophication and change of chironomid fauna in Lake YamanakakoJapan[J]. Limnology,2004,5(1):47-53.
[6] Mousavi S K, Primicerio R, Amundsen P A. Diversity and structure of Chironomidae (Dip tera) communities along a gradient of heavy metal contamination in a subarctic watercourse[J]. Science of the Total Environment,2003,307:93-110.
[7] 徐小雨,周立志,朱文中,等.安徽菜子湖大型底栖动物的群落结构特征[J].生态学报,2011,31(4):0943-0953.
[8] 舒凤月,孔亮,王赛迪,等.山东南四湖摇蚊幼虫群落结构及其对富营养化过程的指示[J].应用与环境生物学报,2013,19(1):141-146.
[9] 渠晓东,张远,马淑芹,等.太子河流域大型底栖动物群落结构空间分布特征[J].环境科学研究,2013,26(5):509-515.
[10] 徐丽娟,郝娜.大清河系洪水资源化利用初探[J].水科学与工程技术,2013(增刊):20-22.
[11] 袁晓燕,余志敏,施卫明.大清河流域典型村镇生活污水排放规律和污染负荷研究[J].农业环境科学学报,2010,29(8):1547-1557.
[12] 谭夔,陈求稳,毛劲乔,等.大清河河口水体自净能力实验[J].生态学报,2007,27(11):4736-4742.
[13] 金相灿,辛玮光,卢少勇,等.入湖污染河流对受纳湖湾水质的影响[J].环境科学研究,2007,20(4):52-56.
[14] 王俊才,王新华.中国北方摇蚊幼虫[M].北京:中国言实出版社,2011.
[15] Shannon C E, Weaver Warren. The Mathematical theory of Cmmmunication[M]. Champaign, Illinois:University of Illinois, 1963.
[16] Pielou E C. Ecological Diversity[M]. New York: John Wiley,1975.
[17] 马克平.论述生物多样性的概念[J].生物多样性,1993,1(1):20-22.
[18] 霍堂斌,刘曼红,姜作发,等.松花江干流大型底栖动物群落结构与水质生物评价[J].应用生态学报,2012,23(1):247-254.
[19] Qin C Y, Zhou J, Cao Y, et al. Quantitative tolerance values for common stream benthic macroinvertebrates in the Yangtze River Delta, Eastern China[J]. Environ Monit Assess,2014,186:5883-5895.
[20] 王备新.大型底栖无脊椎动物水质生物评价研究[D].南京:南京农业大学,2003.
[21] 张跃平.江苏大型底栖无脊椎动物耐污值、BI指数及水质生物评价研究[D].南京:南京农业大学,2006.
[22] 王备新,杨莲芳.我国东部底栖无脊椎动物主要分类单元耐污值[J].生态学报,2004,24(12):2768-2775.
[23] 王建国,黄恢柏,杨明旭,等.庐山地区底栖大型无脊椎动物耐污值与水质生物学评价[J].应用与环境生物学报,2003,9(3):279-284.
[24] 倪雪梅.精通SPSS统计分析[M].北京:清华大学出版社,2010.
[25] 熊飞,李文朝,潘继征.云南抚仙湖摇蚊幼虫的空间分布及其环境分析[J].应用生态学报,2007,18(1):179-184.
[26] 江晶,温芳妮,苏华武,等.叹气沟河优势摇蚊种群动态、周年生产量及营养基础[J].生态学杂志,2008,27(9):1503-1509.
[27] 姚勤农,王裕玮,何杉,等.大清河流域水污染控制和治理规划研究[J].海河水利,1997(4):13-17.
[28] 王俊才,方志刚,鞠复华,等.摇蚊幼虫分布及其与水质的关系[J].生态学杂志,2000,19(4):27-37.
[29] 胡忠军,刘其根,陈立婧,等.上海崇明明珠湖摇蚊幼虫群落结构特征及其对水质的指示作用[J].应用生态学报,2009,20(4):929-936.
[30] 杨大卓.大清河流域水文特性分析[J].水文,2003,23(2):58-60.
[31] 洪松,陈静生.中国河流水生生物群落结构特征探讨[J].水生生物学报,2002,26(3):295-305.
[32] 童晓立,胡慧建,陈思源.利用水生昆虫评价南昆山溪流的水质[J].华南农业大学学报,1995,16(3):6-10.
PDF(1742 KB)

29

Accesses

0

Citation

Detail

段落导航
相关文章

/