蠕虫及其产物对宿主免疫调节作用的研究进展

孙树民,高志刚,杜立银,东彦新

中国农学通报. 2015, 31(32): 16-21

PDF(1453 KB)
PDF(1453 KB)
中国农学通报 ›› 2015, Vol. 31 ›› Issue (32) : 16-21. DOI: 10.11924/j.issn.1000-6850.casb15050054
畜牧 动物医学 蚕 蜂

蠕虫及其产物对宿主免疫调节作用的研究进展

  • 孙树民,高志刚,杜立银,东彦新
作者信息 +

Review on Host Immune Regulation by Helminth and Its Products

  • Sun Shumin, Gao Zhigang, Du Liyin, Dong Yanxin
Author information +
History +

摘要

文章阐述了蠕虫及产物对宿主机体免疫调节的分子作用机制及在疾病治疗方面的潜在能力。蠕虫及产物主要是通过刺激免疫相关细胞增减与细胞因子表达升降来调节宿主的免疫。免疫调节过程与虫体入侵后持续不断产生的衍生物密切相关,蠕虫感染后其分泌物选择性作用于免疫细胞,刺激宿主免疫系统应答,增强或抑制免疫相关因子来实现对宿主机体的免疫调节作用。慢性蠕虫感染对炎症性肠病、过敏性疾病和糖尿病等具有免疫调节作用,此类虫体的感染与这些疾病呈现某种程度的负相关。因此,获知蠕虫及产物对宿主机体免疫调节作用,阐述其免疫调节机制,可以为免疫性疾病治疗药物研发奠定基础。

Abstract

The article expounded the molecular mechanism of helminth, its products regulating the host immune system and the potential ability in disease treatment. Host immune regulation is conducted by the increase or decrease of immune cells and up or down expression of cytokines stimulated by helminth and its products. The immune regulation process is closely related to the secreta generated after the invasion of helminth. Secreta of helminth act on immune cells selectively after infecting the host, stimulate the host immune system response and enhance or suppress the immune related factors to implement the immune regulation. The chronic infection of helminth can regulate inflammatory bowel disease, allergic disease and diabetes, and this type of infection shows negative correlation with these diseases to some extent. In summary, understanding the regulation of helminth and its products and elucidating immune regulation mechanism will lay foundation for drug research and development of autoimmune disease treatment.

关键词

蠕虫;蠕虫产物;免疫调节

Key words

helminth; helminth products; immune regulations

引用本文

导出引用
孙树民,高志刚,杜立银,东彦新. 蠕虫及其产物对宿主免疫调节作用的研究进展. 中国农学通报. 2015, 31(32): 16-21 https://doi.org/10.11924/j.issn.1000-6850.casb15050054
Sun Shumin,Gao Zhigang,Du Liyin and Dong Yanxin. Review on Host Immune Regulation by Helminth and Its Products. Chinese Agricultural Science Bulletin. 2015, 31(32): 16-21 https://doi.org/10.11924/j.issn.1000-6850.casb15050054

参考文献

[1] de Silva N R, Brooker S, Hotez P J, et al. Soil-transmitted helminth infections: updating the global picture[J]. Trends Parasitol,2003,19(12):547-551.
[2] Pullan R L, Smith J L, Jasrasaria R, et al. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010[J]. Parasit Vectors,2014,7(1):37.
[3] Dreyer G, Addiss D, Noroes J. Does longevity of adult Wuchereria bancrofti increase with decreasing intensity of parasite transmission? Insights from clinical observations[J]. Trans R Soc Trop Med Hyg,2005,99(12):883-892.
[4] Ottesen E A, Weller P F, Heck L. Specific cellular immune unresponsiveness in human filariasis[J]. Immunology,1977,33(3):413-421.
[5] McSorley H J, Maizels R M. Helminth infections and host immune regulation[J]. Clin Microbiol Rev,2012,25(4):585-608.
[6] Taylor M D, van der Werf N, Maizels R M. T cells in helminth infection: the regulators and the regulated[J]. Trends Immunol,2012,33(4):181-189.
[7] Hussaarts L, van der Vlugt L E, Yazdanbakhsh M, et al. Regulatory B-cell induction by helminths: implications for allergic disease[J]. J Allergy Clin Immunol,2011,128(4):733-739.
[8] Broadhurst M J, Leung J M, Lim K C, et al. Upregulation of retinal dehydrogenase 2 in alternatively activated macrophages during retinoid-dependenttype-2 immunity to helminth infection in mice[J]. PLoS Pathog,2012,8(8):e1002883.
[9] McSorley H J, Hewitson J P, Maizels R M. Immunomodulation by helminth parasites: definingmechanisms and mediators[J]. Int J Parasitol,2013,43(3-4):301-310.
[10] Robinson M W, Dalton J P, O’Brien B A, et al. Fasciola hepatica: the therapeutic potential of a worm secretome[J]. Int J Parasitol, 2013,43(3-4):283-291.
[11] Hepworth M R, Grencis R K, Artis D. Regulation of immunity and inflammation following intestinal helminth infection in parasiticnematodes: molecular biology, biochemistry and immunology[M]. Oxfordshire, UK: CABI,2013:106-129.
[12] Brunet L R, Finkelman F D, Cheever A W, et al. IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis[J]. J Immunol,1997,159(2):777-785.
[13] Carvalho L, Sun J, Kane C, et al. Review serieson helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function[J]. Immunology,2009,126(1):28-34.
[14] Steinfelder S, Andersen J F, Cannons J L, et al. The major component in Schistosomeeggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1) [J]. J Exp Med,2009,206(8):1681-1690.
[15] Everts B, Hussaarts L, Driessen N N, et al. Schistosome-derivedomega-1drivesTh2polarization by suppressing protein synthesis following internalization by the mannose receptor[J]. J Exp Med,2012,209(10):1753-1767.
[16] Schramm G, Mohrs K, Wodrich M, et al. Cuttingedge: IPSE/alpha-1, a glycoprotein from Schistosoma mansoni eggs, induces IgEdependent, antigen-independent IL-4 production by murine basophils in vivo[J]. J Immunol,2007,178(10):6023-6027.
[17] Meevissen M H, Wuhrer M, Doenhoff MJ, et al. Structural characterization of glycans on omega-1, a major Schistosoma mansoni egg glycoprotein that drives Th2responses[J]. J Proteome Res,2010,9(5):2630-2642.
[18] Wuhrer M, Balog C I, Catalina M I, et al. IPSE/alpha-1, a major secretory glycoprotein antigen from Schistosoma eggs, expresses the Lewis X motif on core-difucosylated N-glycans[J]. FEBS J,2006,273(10):2276-2292.
[19] Thomas P G, Carter M R, Atochina O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism[J]. J Immunol,2003,171(11):5837-5841.
[20] Harnett W, Al-Riyami L, Rzepecka J, et al. Modulation of autoimmune and allergic responses by de?ned nematode molecules in parasitic nematodes: molecular biology, biochemistry and immunology[M]. Oxfordshire, UK:CABI,2013:144-155.
[21] Tundup S, Srivastava L, Harn D A Jr. Polarization of host immune responses by helminth expressed glycans[J]. Ann N Y Acad Sci,2012,1253:E1-E13.
[22] Klotz C, Ziegler T, Figueired A S, et al. A helminth immunomodulator exploits host signaling events to regulate cytokine production inmacrophages[J]. PLoS Pathog,2011,7(1):e1001248.
[23] Pastrana D V, Raghavan N, FitzGerald P, et al. Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor[J]. Infect Immun,1998,66(12):5955-5963.
[24] Manoury B, Gregory W F, Maizels R M, et al. Bm-CPI-2, a cystatin homolog secreted by the ?larial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing[J]. Curr Biol,2001,11(6):447-451.
[25] Zaccone P, Cooke A. Helminth mediated modulation of Type 1 diabetes (T1D)[J].Int J Parasitol,2013,43(3-4):311-318.
[26] Grainger J R, Smith K A, Hewitson J P, et al. Helminth secretion induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway[J]. J Exp Med,2010,207(11):2331-2341.
[27] Brannstrom K, Sellin M E, Holmfeldt P, et al. The Schistosoma mansoniprotein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential to inhibit Toll-like receptor signaling[J]. Infect Immun,2009,77(3):1144-1454.
[28] Goodridge H S, Marshall F A, Wilson E H, et al. In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing ?larial nematode glycoprotein ES-62 polarizes their differentiation to an anti-in?ammatory phenotype[J]. Immunology,2004,113(4):491-498.
[29] Pineda M A, McGrath M A, Smith P C, et al. Theparasitic helminth product ES-62 suppresses pathogenesis in CIA by targeting of the IL-17-producing cellular network at multiple sites[J]. Arthritis Rheum,2012,64(10):3168-3178.
[30] Harn D A, McDonald J, Atochina O, et al. Modulation of host immune responses by helminth glycans[J]. Immunol Rev,2009,230(1):247-257.
[31] van Riet E, Everts B, Retra K, et al. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization[J]. BMC Immunol,2009,10:9.
[32] Kane C M, Jung E, Pearce E J. Schistosoma mansoni egg antigen-mediated modulation ofToll-like receptor (TLR)-induced activation occurs independently of TLR2, TLR4, and MyD88 [J]. Infect Immun,2008,76(12):5754-5759.
[33] Harnett M, Melendez M A, Harnett J, et al.The therapeutic potential of the filarial nematode-derive immunomodulator, ES-62, in inflammatory disease[J]. Clin Exp Immunol,2010,159(3):256-267.
[34] Brannstrom, K., Sellin, M. E, Holmfeldt, P, et al. The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling[J].Infect Immun. 2009,77(3):1144-1154.
[35] 赵颖,杨世忠,朴云峰,等.旋毛虫对三硝基苯磺酸诱导肠炎小鼠Th1/Th2类细胞因子基因表达的影响[J].吉林大学学报:医学版,2007(1):67-70.
[36] 孙树民,王学林,郭恒,等.旋毛虫抗原基因T668重组蛋白对鼠结肠炎的保护效应[J].中国兽医学报,2014(3):436-441.
[37] Maizels R M, Gomez-Escobar N, Prieto-Lafuente L, et al. Expression of helminth genes in Leishmania: an experimental transfection systemto test immunological function[J]. Parasite Immunol,2008,30(4):195-201.
[38] Dondji B, Sun T, Bungiro R D, et al. CD4 T cells mediate mucosal and systemic immune responses to experimental hookworm infection[J]. Parasite Immunol,2010,32(6):406-413.
[39] Collison L W, Chaturvedi V, Henderson A L, et al. IL-35-mediated induction of a potent regulatory T cellpopulation[J]. Nat Immunol,2010,11(12):1093-1101.
[40] Klotz C, Ziegler T, Figueiredo AS, et al. gevents to regulate cytokine production in macrophages[J].PLoSPathog,2011,7(1):e1001248
[41] Dvoro?ňáková E, Hurníková Z, Ko?odziej-Sobocińska M. Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae[J]. Parasitol Res,2011,108(1):169-176.
PDF(1453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/