为深刻认识太行山地形对降雪的影响,做好降雪天气预报服务,从而适应新型农业种植结构调整,减小降雪天气对农业生产的影响,利用NCEP全球再分析资料和实况探测资料,采用WRF中尺度数值模式,对2009年11月10日和2010年3月14日山西省两次锢囚锋暴雪天气进行数值试验,比较分析了太行山地形变化对降雪量级、强度、落区及空间结构特征的影响。结果表明:(1)对于影响系统偏南的暴雪天气,太行山高度适中更能使降雪接近实况,而对于偏北的暴雪天气,则是抬高地形,影响更明显。(2)锢囚锋降雪的不同阶段,太行山地形变化对低层水汽输送的影响差异较大。(3)适当降低太行山高度,使得暴雪区上空高空辐散、低空辐合的垂直结构更明显,中心强度更强,对暴雪的产生更为有利。(4)对于影响系统偏南的暴雪天气,太行山高度降低使得高层干侵入强度增强,造成触发作用加强。
Abstract
The study aims to deeply understand the influence of topography of Taihang Mountains on heavy snow, provide better forecast and service for agriculture production, therefore to adapt to the adjustment of new agricultural planting structure and reduce the influence of snow on agriculture production. The authors used NCEP global reanalysis data and observations, conducted numerical experiments of two occluded frontal snowstorms occurring over Shanxi on November 10 of 2009 and March 14 of 2010 with WRF model, and investigated the impact of topography change of Taihang Mountains on magnitude, intensity, scope and spatial structural characteristics of snowstorm. The results showed that: (1) the simulation with moderate altitude was closer to observations for the snowstorm resulting from southerly influence systems, while the impact of the simulation with increased altitude was more obvious for the snowstorm due to northerly influence systems; (2) during different stages of occluded frontal snowstorm, there was a large discrepancy in the impact of topography change on the transport of low-level moisture; (3) the simulation with suitably reduced altitude made vertical structure of high-level divergence and low-level convergence more obvious and central intensity stronger, which was beneficial for the occurrence of snowstorm; (4) regarding the snowstorm owing to southerly influence systems, the simulation with reduced altitude strengthened high-level dry intrusion and consequently led to the enhanced triggering effect.
关键词
太行山地形;锢囚锋降雪;水汽输送;动热力结构;差异
{{custom_keyword}} /
Key words
topography of Taihang Mountains; occluded frontal snowstorms; moisture transport; dynamic and thermodynamic structure; discrepancy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭英莲,吴翠红,王继竹,等.“7.15”宜昌大暴雨的地形影响特征[J].气象,2012,38(1):81-89.
[2] 孙继松,杨波.地形与城市环流共同作用下的β中尺度暴雨[J].大气科学,2008,32(6):1352-1364.
[3] 廖移山,冯新,石燕,等.2008年“7.22”襄樊特大暴雨的天气学机理分析及地形的影响[J].气象学报,2011,69(6):945-955.
[4] 刘冀彦,毛龙江,牛涛,等.地形对2011年9月华西致灾暴雨强迫作用的数值模拟研究[J].气象,2013,39(8):975-987.
[5] 毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象,2006,25(3):485-494.
[6] 李川,陈静,何光碧.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象,2006,25(3):442-450.
[7] 阎丽凤,车军辉,周雪松,等.泰山地形对一次局地强降水过程动力作用的数值模拟分析[J].气象,2013,39(11):1393-1401.
[8] 吴翠红,张萍萍,龙利民,等.峡谷地形对两次大暴雨过程的增幅作用对比分析[J].暴雨灾害,2013,32(1):38-45.
[9] 郭欣,郭学良,付丹红,等.钟形地形动力抬升和重力波传播与地形云和降水形成关系研究[J].大气科学,2013,37(4):786-800.
[10] 赵桂香.一次阻高背景下地形对晋南特大暴雨的作用分析[J].高原气象,2009,28(4):897-905.
[11] 张杰,李栋梁,王文.夏季风期间青藏高原地形对降水的影响[J].地理科学,2008,28(2):235-240.
[12] 刘晓东,安芷生,方建刚,等.全球气候变暖条件下黄河流域降水的可能变化[J].地理科学,2002,22(5):513-519.
[13] 解明恩,程建刚.云南气象灾害特征及成因分析[J].地理科学,2004,24(6):722-726.
[14] 范广洲,吕世华.地形对华北夏季降水影响的数值模拟研究[J].高原气象,1999,18(4):659-667.
[15] 徐国强,胡欣,苏华.太行山地形对“96.8”暴雨影响的数值试验研究[J].气象,1999,25(7):1-7.
[16] 侯瑞钦,景华,王丛梅,等.太行山地形对一次河北暴雨过程影响的数值研究[J].气象科学,2009,29(5):687-693.
[17] 侯瑞钦,景华,陈小雷,等.太行山迎风坡降水云微物理结构数值模拟分析[J].气象科学,2010,30(3):351-357.
[18] 赵桂香,杜莉,范卫东,等.一次冷锋倒槽暴风雪特征及其成因分析[J].高原气象,2011,30(6):1516-1525.
[19] 赵桂香,杜莉,郝孝智,等.3次回流倒槽作用下山西大(暴)雪天气比较分析[J].中国农学通报,2013,29(32):337-349.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}