为了探讨山核桃林下不同人工植被恢复模式对山核桃林地土壤养分及山核桃产量的变化规律,对宁国仙霞镇典型山核桃生态严重退化的林地通过人工植被建植5年后的土壤养分进行分析。结果表明:不同植被恢复模式下土壤pH 4.5~6.5;全钾的平均含量0.92 g/kg;全镁的平均含量0.98 g/kg。山核桃林下种植紫穗槐模式、山核桃林下施除草剂模式的含氮量较低;山核桃林下种植白三叶模式的全钙的含量66.25 mg/kg以及含氮量112.68 g/kg最高;山核桃林下种植百喜草模式的含水率17.68%最高,含氮量较高。山核桃林下种植紫穗槐模式样地产量最高,山核桃林下施除草剂模式样地产量最低。经多重比较,不同经营模式山核桃林下,种植紫穗槐模式有效增加山核桃的产量,种植百喜草模式对水分的保持效果最好,土壤pH 5.88对山核桃的生长比较有利。
Abstract
To discuss the hickory forest soil nutrient and the variety regularity of pecan’s production under different vegetations artificial recovery mode, analysis of the pecan soil nutrients in the typical stands was made after 5 years of artificial vegetation planting in Xianxia Town, Ningguo where the area was serious ecological degenerated. The results showed that: the value of different vegetation restoration on soil pH was 4.5-6.5; average potassium content was 0.92 g/kg; average magnesium content was 0.98 g/kg. The low nitrogen content was reflected in 2 modes which were Amorpha planting under hickory forest mode and spray herbicide in hickory forest mode; the high calcium and nitrogen content showed in the white clover planting under hickory forest mode, which was 112.68 g/kg and 66.25 mg/kg. The high moisture content was showed in Hickory bahia grass understory planting pattern which was 17.68%. The highest production was in planting Amorpha mode and the lowest was in herbicide mode. After multiple comparisons, among different business modes in pecan forest, planting Amorpha mode effectively increased production, planting Hickory bahia grass mode was beneficial to the water and soil conservation, the favorable ph of pecan growing was 5.88.
关键词
经营模式; 土壤养分; 山核桃
{{custom_keyword}} /
Key words
operation mode; soil nutrients; pecan
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展, 2003,18(1):37-44.
[2] 郑宏兵,束庆龙,丁之恩.山核桃溃疡病与营养元素的关系[J].经济林研究,2007,25(3):19-23.
[3] 方肇成,蒋新民,郑花兰.天目山区山核桃生产发展建议[J].中国果树,2005(4):51-52.
[4] 郭传友,黄坚钦,王正加,等.大别山山核桃果实品质与土壤性质的相关分析[J].经济林研究,2006,24(4):19-22.
[5] Kim T, Wetzstein H Y. Cytological and ultra-structural evaluations of zinc deficiency in leaves[J].J.Amer.Soc.Hort.Sci,2003,128 (2): 171-175.
[6] Wang L, Zhang J T, Shang T L, et al. Species diversity of mountain meadow of Lishan and the relation with the soil physicochemical properties[J].Chinese Journal of Applied & Environmental Biology, 2004,10(1):18-22.
[7] 黄云凤,张珞平,洪华生,等.不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报,2004,23(4):735-739.
[8] 刘胜清.山核桃栽培技术初探[J].浙江林业科技,2001,21(2):57-61.
[9] 徐小磊,戴圣潜,刘家云,等.安徽宁国地区岩——土系统元素迁移及其农业地质环境效应[J].地球科学——中国地质大学学报, 2005,30(2):170-224.
[10] 童根平,王卫国,张圆圆,等.大田条件下山核桃林地土壤和叶片养分变化规律[J].浙江林学院学报,2008,26(4):516-521.
[11] 国家林业局.中华人民共和国林业行业标准——森林土壤分析方法[S].北京:中国标准出版社,2000.
[12] 林开敏,俞新妥,洪伟,等.杉木人工林林下植物对土壤肥力的影响[J].林业科学,2001,37(1):94-98.
[13] Smith M W, Wood B W, Raun W R. Recovery and partitioning of nitrogen from early spring and midsummer applications to pecan trees[J].J Amer Soc Hort Sci,2007,132(6):758-763.
[14] Kraimer R A, Lindemann W C, Herrera E A. Distribution of 15Nlabeled fertilizer applied to pecan: a case study[J] HortSci,2001,36 (2):308-312.
[15] Wang S Z, Chen G C, Bai Y P, et al. Interrelation between plant species diversity and soil environmental factors in Bird Island of Qinghai Lake[J].Chinese Journal of Applied Ecology,2005,16(1): 186-188.
[16] Acu a-Maldonado L E, Smith M W, Maness N O, et al. Influence of nitrogen application time on nitrogen absorption, partitioning, and yield of pecan[J].J Amer Soc Hort Sci,2003,128(2):155-162.
[17] 杨勤科,李锐.区域水土流失研究的科学体系[J].水土保持研究, 2006(5):11-13.
[18] 温仲明,焦峰,赫晓慧,等.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草业学报,2007,16(1):16-23.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}