秸秆还田对土壤微生物影响的研究进展

伍玉鹏

中国农学通报. 2014, 30(29): 175-183

PDF(661 KB)
PDF(661 KB)
中国农学通报 ›› 2014, Vol. 30 ›› Issue (29) : 175-183. DOI: 10.11924/j.issn.1000-6850.2014-0064

秸秆还田对土壤微生物影响的研究进展

  • 伍玉鹏
作者信息 +

Research Progress of Effect of Straw Returning on Soil Microorganism

Author information +
History +

摘要

秸秆还田是有效利用秸秆资源的重要途径。土壤微生物在秸秆腐解和营养元素释放过程中具有举足轻重的作用,而另一方面秸秆本身也会对土壤微生物产生较大的影响。秸秆还田概况入手,从不同的秸秆还田方式、外源添加物、不同的秸秆还田量、耕作制度和转基因秸秆几个方面综述了目前国内外秸秆还田对土壤微生物影响的研究报告。目前已有文献的研究大多集中在土壤微生物量方面,但并没有形成一致的观点,且缺乏对土壤微生物长期动态和功能群的研究。据此认为应在今后的研究中加强以下几个方面:以更为先进的方法结合多种研究手段揭示秸秆还田过程中土壤微生物的实际情况;开展关于秸秆分解整个过程中土壤微生物的动态变化研究;以微生物功能群为单位研究秸秆还田对微生物的影响;采用多种不同的方法和长期的观察以研究转基因作物秸秆还田后对土壤微生物生态的影响。

Abstract

Straw returning was an effective way to utilize straw resource. While playing an important role in the decomposition of straw and nutrient cycling, soil microbes were also subject to influences from straw. This paper summarized studies on effects of straw returning on soil microbes from the perspective of returning techniques, additives, returning amounts, farming system and transgenic straw. The existing research literature mostly focused on soil microbial biomass. However, there was no concurrent conclusion and there were few reports on soil microbes’long-term dynamics or functional groups. Therefore, future research should focus on following issues: actual status of soil microbes, which should be revealed by utilizing better methods; dynamic study of soil microbes throughout the whole process of decomposition; effects of straw returning on soil microbes studied at the level of functional group; varies methods and long term observation for the study on the effects of transgenic straw on microbes.

关键词

秸秆还田;土壤微生物;影响;综述

Key words

straw returning; soil microbes; effects; review

引用本文

导出引用
伍玉鹏. 秸秆还田对土壤微生物影响的研究进展. 中国农学通报. 2014, 30(29): 175-183 https://doi.org/10.11924/j.issn.1000-6850.2014-0064
Research Progress of Effect of Straw Returning on Soil Microorganism. Chinese Agricultural Science Bulletin. 2014, 30(29): 175-183 https://doi.org/10.11924/j.issn.1000-6850.2014-0064

参考文献

[1] 高祥照,马文奇,马常宝,等.中国作物秸秆资源利用现状分析[J].华中农业大学学报,2002,31(3):242-247.
[2] Lao X R, Sun W H, Wang Z. Effect of matching use of straw and chemical fertilizer on soil fertility[J]. Acta Pedologica Sinica, 2003, 40(4):623-629.
[3] Witt C, Cassman K, Olk D, et al. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems[J]. Plant and Soil, 2000,225 (1):263-278.
[4] 薛菁芳,高艳梅,汪景宽,等.土壤微生物量碳氮作为土壤肥力指标的探讨[J].土壤通报,2007,38(2):247-250.
[5] Rogers B, Tate R. Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J]. Soil Biology and Biochemistry, 2001,33(10):1389-1401.
[6] Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 2010,76(4): 999-1007.
[7] 周江明,徐大连,薛才余.稻草还田综合效益研究[J].中国农学通报, 2002,18(4):7-10.
[8] 王宏立,张祖立,白晓虎.秸秆饲料资源开发利用的研究进展[J].沈阳农业大学学报,2003,34(3):228-231.
[9] 刘芳,张长生,陈爱武,等.秸秆还田技术研究及应用进展[J].作物杂志,2012(2):18-23.
[10] 石元春,汪燮卿,依伟伦.中国可再生能源发展战略研究丛书——生物质能卷[M].北京:中国电力出版社,2008.
[11] 李豪.从秸秆焚烧致空气污染看秸秆综合利用[J].环境保护,2013 (1):65-66.
[12] Collins H, Rasmussen P, Douglas C. Crop rotation and residue management effects on soil carbon and microbial dynamics[J]. Soil Science Society of America Journal, 1992,56(3):783-788.
[13] 李明,吴发启,蒋碧,等.小麦秸秆焚烧对土壤有机质及微生物和玉米产量的影响[J].干旱地区农业研究,2013,31(2):95-99.
[14] 刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究[J].土壤,2003,35(4):347-348.
[15] 陈亮,赵兰坡,赵兴敏.秸秆焚烧对不同耕层土壤酶活性,微生物数量以及土壤理化性状的影响[J].水土保持学报,2012,26(4):118-122.
[16] Larson J L, Zak D R, Sinsabaugh R L. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone[J]. Soil Science Society of America Journal, 2002,66(6):1848-1856.
[17] Biederbeck V, Campbell C, Bowren K, et al. Effect of burning cereal straw on soil properties and grain yields in Saskatchewan[J]. Soil Science Society of America Journal, 1980,44(1):103-111.
[18] 高美英,刘和,秦国新,等.秸杆覆盖对苹果园土壤固氮菌数量年变化的影响[J].果树学报,2000,17(3):185-187.
[19] Ocio J, Brookes P, Jenkinson D. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N[J]. Soil Biology and Biochemistry, 1991,23(2):171-176.
[20] 蔡晓布,钱成,张元,等.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004,15(3):463-468.
[21] Soon Y K, Lupwayi N Z. Straw management in a cold semi- arid region: Impact on soil quality and crop productivity[J]. Field Crops Research, 2012, 139:39-46.
[22] Rottmann N, Dyckmans J, Joergensen R G. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths[J]. European Journal of Soil Biology, 2010, 46(1):27-33.
[23] 尚志强,徐刚,许志强,等.秸秆还田对烤烟根际微生物种群数量的影响[J].内蒙古农业科技,2011(5):63-66.
[24] Cao N, Wang P, Kong C. Effects of lignin from allelopathic and non- allelopathic rice straws on Echinochloa crus- galli and soil microorganisms[J]. Allelopathy Journal, 2008,22(2):397-402.
[25] 张成娥,王栓全,作物秸秆腐解过程中土壤微生物量的研究[J].水土保持学报,2000,14(3):96-99.
[26] 刘建国,卞新民,李彦斌,等.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,2008,19(5):1027-1032.
[27] Glissmann K, Weber S, Conrad R. Localization of processes involved in methanogenic degradation of rice straw in anoxic paddy soil[J]. Environmental microbiology, 2001,3(8):502-511.
[28] Tun C C, Kimura M. Microscopic observation of the decomposition process of leaf blade of rice straw and colonizing microorganisms in a Japanese paddy field soil during the cultivation period of paddy rice[J]. Soil science and plant nutrition, 2000,46(1):127-137.
[29] Weber S, Stubner S, Conrad R. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil[J]. Applied and environmental microbiology, 2001,67(3):1318-1327.
[30] 贾伟,周怀平,解文艳,等.长期秸秆还田秋施肥对褐土微生物碳,氮量和酶活性的影响[J].华北农学报,2008,23(2):138-142.
[31] Liu C, Liu Y, Fan C, et al. The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple[J]. Journal of soil science and plant nutrition, 2013,13(2): 433-444.
[32] Xu J, Feng Y, Wang Y, et al. Soil microbial mechanisms of Stevia rebaudiana (Bertoni) residue returning increasing crop yield and quality[J]. Biology and Fertility of Soils, 2013,1-8.
[33] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews, 1988,63(3):433-462.
[34] 许仁良,王建峰,张国良,等.秸秆,有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J].生态学报,2010,30(13):3584-3590.
[35] Singh H, Singh K. Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation[J]. Biology and Fertility of Soils, 1993,16(4):275-281.
[36] Ocio J, Martinez J, Brookes P. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil[J]. Soil Biology and biochemistry, 1991,23(7):655-659.
[37] Henriksen T, Breland T. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999,31(8):1121-1134.
[38] 石其伟,刘强, 荣湘民,等.不同微生物菌剂对水稻秸秆发酵效果的影响[J]. 湖南农业大学学报:自然科学版,2006,32(3):264-268.
[39] 吴翔,甘炳成,刘本洪.不同载体催腐剂应用于秸秆还田的微生物区系效果研究[J].西南农业学报,2010,23(1):287-289.
[40] 钱海燕,杨滨娟,黄国勤,等.秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响[J].生态环境学报,2012,21(3): 440-445.
[41] 解媛媛,谷洁,高华,等.微生物菌剂酶制剂化肥不同配比对秸秆还田后土壤酶活性的影响[J].水土保持研究,2010,17(2):233-238.
[42] Deca?ns T, Rangel A, Asakawa N, et al. Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia[J]. Biology and Fertility of Soils, 1999, 30 (1- 2): 20-28.
[43] Lavelle P, Martin A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics[J]. Soil Biology and Biochemistry, 1992, 24 (12): 1491- 1498.
[44] 陶军,张树杰,焦加国,等.蚯蚓对秸秆还田土壤细菌生理菌群数量和酶活性的影响[J].生态学报,2010,30(5):1306-1311.
[45] G?rres J H, Savin M C, Amador J A. Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris)[J]. Soil Biology and Biochemistry, 2001, 33 (14): 1881-1887.
[46] 焦加国,朱玲,李辉信,等.蚯蚓活动和秸秆施用方式对土壤生物学性质的动态影响[J].水土保持学报,2012,26(1):209-213.
[47] Scheu S. Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae)[J]. Biology and Fertility of Soils, 1987, 5 (3): 230-234.
[48] Enami Y, Okano S, Yada H, et al. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern[J]. European journal of soil biology, 2001,37(4):269-272.
[49] 强学彩,袁红莉,高旺盛.秸秆还田量对土壤 CO2释放和土壤微生物量的影响[J].应用生态学报,2004,15(3):469-472.
[50] 周文新,陈冬林,卜毓坚,等.稻草还田对土壤微生物群落功能多样性的影响[J].环境科学学报,2008,28(2):326-330.
[51] 谭周进,李倩,李建国,等.稻草还田量对晚稻土微生物数量及活度的动态影响[J].农业环境科学学报,2006,25(3):670-673.
[52] 陈冬林,易镇邪,周文新,等.不同土壤耕作方式下秸秆还田量对晚稻土壤养分与微生物的影响[J].环境科学学报,2010,30(8):1722-1728.
[53] 韩新忠,朱利群,杨敏芳,等.不同小麦秸秆还田量对水稻生长,土壤微生物生物量及酶活性的影响[J].农业环境科学学报,2012,31 (11):2192-2199.
[54] Staley T, 郎印海. 耕作方式对土壤微生物生物量影响的研究[J].水土保持科技情报,2001(1):12-13.
[55] Saffigna P, Powlson D, Brookes P, et al. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian Vertisol[J]. Soil Biology and Biochemistry, 1989,21(6):759-765.
[56] 曹文亮,张丽华,王静.免耕与覆盖对土壤微生物生理类群的影响[J].甘肃农业大学学报,2008,43(6):123-126.
[57] Kushwaha C, Tripathi S, Singh K. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem[J]. Soil and Tillage Research, 2000, 56(3):153-166.
[58] 刘定辉,舒丽,陈强,等.秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J].应用与环境生物学报,2011,17(2):158-161.
[59] 任万军,刘代银,吴锦秀,等.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响[J].应用生态学报,2009,20(4):817-822.
[60] Spedding T, Hamel C, Mehuys G, et al. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems[J]. Soil Biology and Biochemistry, 2004,36(3):499-512.
[61] 郭梨锦,曹凑贵,张枝盛,等.耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J].农业环境科学学报,2013,32(8):1577- 1584.
[62] Feng Y, Motta A, Reeves D, et al. Soil microbial communities under conventional- till and no- till continuous cotton systems[J]. Soil Biology and Biochemistry, 2003,35(12):1693-1703.
[63] 王洪兴,陈欣,唐建军,等.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响[J].生态学报,2004,24(1):89-94.
[64] Mulder C, Wouterse M, Raubuch M, et al. Can transgenic maize affect soil microbial communities?[J]. PLoS Computational Biology, 2006,2(9):1165-1172.
[65] Raubuch M, Roose K, Warnstorff K, et al. Respiration pattern and microbial use of field-grown transgenic Bt- maize residues[J]. Soil Biology and Biochemistry, 2007,39(9):2380-2389.
[66] Fang H, Dong B, Yan H, et al. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions[J]. Journal of Environmental Sciences, 2012,24(7):1259-1270.
[67] Lu H, Wu W, Chen Y, et al. Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field[J]. Journal of Soils and Sediments, 2010,10(8):1598-1605.
[68] Henriksen T M, Breland T A. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology and Fertility of Soils, 2002,35(1):41-48.
[69] Wu W, Lu H, Liu W, et al. Decomposition of Bacillus thuringiensis (Bt) transgenic rice residues (straw and roots) in paddy fields[J]. Journal of Soils and Sediments, 2009,9(5):457-467.
[70] Wu W X, Ye Q F, Min H, et al. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil[J]. Soil Biology and Biochemistry, 2004,36 (2):289-295.
[71] Saxena D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology and Biochemistry, 2001,33(9):1225-1230.
[72] 徐晓宇,叶庆富,吴伟祥,等.转Bt基因"克螟稻"秸秆还田对稻田厌氧微生物种群和酶活性的影响[J].植物营养与肥料学报,2004,10 (1):63-67.
[73] Donegan K, Palm C, Fieland V, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin[J]. Applied Soil Ecology, 1995,2(2):111-124.
[74] 周学永,刘宁,赵曼,等.转Bt基因作物释放杀虫晶体蛋白对土壤生态安全的影响[J].遗传,2011,33(5):443-448.
[75] Zhou X, Huang Q, Chen S, et al. Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil[J]. Applied clay science, 2005,30(2):87- 93.
[76] 张燕飞,岳龙,张素芬,等.Bt水稻杀虫蛋白时空变化及秸秆还田后在土壤中的持留规律[J].核农学报,2011,25(4): 779-784.
PDF(661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/