生防细菌对植物根围微生态效应的研究进展

刘丹 张丽萍 史延茂 尹淑丽 崔少飞

中国农学通报. 2014, 30(7): 260-265

中国农学通报 ›› 2014, Vol. 30 ›› Issue (7) : 260-265. DOI: 10.11924/j.issn.1000-6850.2013-2480
植物保护 农药

生防细菌对植物根围微生态效应的研究进展

  • 刘丹 张丽萍 史延茂 尹淑丽 崔少飞
作者信息 +

Advances on Micro-ecological Effects of Antagonistic Bacteria on Rhizosphere

Author information +
History +

摘要

利用生防细菌防治植物土传病害是农业可持续发展的趋势,研究生防细菌对根围微生态的影响对生防细菌防治作用的有效发挥及安全合理使用具有重要指导意义,为评估生防细菌的生态安全提供重要依据。本研究介绍了传统的分离培养、BIOLOG微平板、PLFA以及基于PCR技术的植物微生态学的研究方法,从生防细菌亲缘关系较近的细菌、微生物群落结构及根围土壤酶活3个方面对生防细菌产生的根围微生态影响进行总结,并对未来的研究方向进行了展望。

Abstract

It is a trend of agricultural persistence development that prevention and control of the plant soilborne diseases using antagonistic bacteria. The investigation of the effects of antagonistic bacteria on rhizosphere micro- ecology has important guiding significance for its effective protection and secure application, which can also provide crucial evidences for evaluating the environmental security of antagonistic bacteria. This paper reviewed the research method of plant micro- ecology, such as cultivation techniques, BIOLOG microplate techniques, PLFA method and PCR-based methods, and summarized the micro-ecology effect of antagonistic bacteria on rhizosphere, including the effect on closely related bacteria, the community structure of microorganism and the enzyme activity of rhizosphere soil. Furthermore, the future research direction was prospected.

关键词

生防细菌; 根际; 微生态

Key words

antagonistic bacteria; rhizosphere; microecology

引用本文

导出引用
刘丹 张丽萍 史延茂 尹淑丽 崔少飞. 生防细菌对植物根围微生态效应的研究进展. 中国农学通报. 2014, 30(7): 260-265 https://doi.org/10.11924/j.issn.1000-6850.2013-2480
Advances on Micro-ecological Effects of Antagonistic Bacteria on Rhizosphere. Chinese Agricultural Science Bulletin. 2014, 30(7): 260-265 https://doi.org/10.11924/j.issn.1000-6850.2013-2480

参考文献

[1]梅汝鸿,徐维敏.植物微生态学[M].北京:中国农业出版社,1998:1- 3.
[2] 车玉伶,王慧,胡洪营,等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133.
[3] Punja Z K, Utkhede R S. Using fungi and yeasts to manage vegetable crop diseases[J].Trends in Biotechnology,2003,21(9):400- 407.
[4] Swain M R, Ray R C. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cow dung microflora[J]. Microbiological research,2009,164(2):121-130.
[5] 张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报, 2003,23(5):988-995.
[6] 刘开朗,王加启,卜登攀,等.环境微生物群落结构与功能多样性研究方法[J].生态学报,2010,30(4):1074-1080.
[7] 王保军,刘双江.环境微生物培养新技术的研究进展[J].微生物学通报,2013,40(1):6-17.
[8] Amann R I, Ludwig W, Schleif er K H. Phylogenetic identification and insitudetection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995,59(1):143-169.
[9] Smalla K, Wachtendorf U, Heuer H, et al. Analysis of BIOLOG GN substrate utilization patterns by microbial communities[J]. Applied and Environmental Microbiology,1998,64(4):1220-1225.
[10] 高小宁.植物内生细菌菌株 Em7对油菜菌核病的防治研究[D].杨凌:西北农林科技大学,2012:44-47.
[11] 张秋芳,刘波,林营志,等.土壤微生物群落磷脂脂肪酸 PLFA 生物标记多样性[J].生态学报,2009,29(008):4127-4137.
[12] 张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报, 2003,23(5):988-995.
[13] 潘建刚,呼庆,齐鸿雁,等.叶际微生物研究进展[J].生态学报,2011, 31(2):0583-0592.
[14] Pratt B, Riesen R, Johnston C G. PLFA Analyses of Microbial Communities Associated with PAH- Contaminated Riverbank Sediment[J]. Microbial ecology,2012,64(3):680-691.
[15] Johansen A, Olsson S. Using Phospholipid Fatty Acid Technique to Study Short- Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere[J]. Microbial Ecology,2005,49:272-281.
[16] Dong X, Reddy G B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR- DGGE technique[J]. Bioresource technology,2010,101(4):1175-1182.
[17] Chen F, Wang M, Zheng Y, et al. The Effect of Biocontrol Bacteria on Rhizosphere Bacterial Communities Analyzed by Plating and PCR-DGGE[J]. Current Microbiol,2013(67):177-182.
[18] Culman S W, Bukowski R, Gauch H G, et al. T-REX: software for the processing and analysis of T-RFLP data[J]. Bmc Bioinformatics, 2009,10(1):171.
[19] 高观朋.利用传统和分子生物学方法相结合探索生防菌对黄瓜根围土壤真菌群落的影响[D].上海:华东理工大学,2011:46-55.
[20] Robe P, Nalin R, Capellano C, et al. Extraction of DNA from soil [J]. European Journal of Soil Biology,2003,39(4):183-190.
[21] Kao C M, Chen C S, Tsa F Y, et al. Application of real-time PCR, DGGE fingerprinting, and culture- based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum- hydrocarbon plume[J]. Journal of hazardous materials, 2010,178(1):409-416.
[22] 邢德峰,任南琪,宋佳秀,等.不同 16SrDNA靶序列对 DGGE分析活性污泥群落的影响[J].环境科学,2006,27(7):1424-1428.
[23] 李丹,王秋玉.变性梯度凝胶电泳及其在土壤微生物生态学中的应用[J].中国农学通报,2011,27(3):6-9.
[24] Fontana C, Vignolo G, Cocconcellip S. PCR-DGGE analysis for the identification of microbial populations from Argentinean dry fermented sausages[J]. JMicrobiol Methods,2005,63(3):254-263.
[25] Jeun Y C, Park K S, Kin C H, et al. Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria [J]. Biological Control,2004,29:34-42.
[26] Newton C, Fagbola O, Smalla K. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J].Applied Environmental Microbiology,2003,69:3758-3766.
[27] 张志丹,赵兰坡.土壤酶在土壤有机培肥研究中的意义[J].土壤通报,2006,37(2):362-368.
[28] Naseby D C, Lynch J M. Impact of wild- type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea[J]. Molecular Ecology,1998,7(5):617-625.
[29] Naseby D C, Lynch J M. Effects of Pseudomonas fluorescens F113 on ecological functions in the pea rhizosphere are dependent on pH [J]. Microbial Ecology,1999,37:248-256.
[30] Naseby D C, Lynch J M. Effect of 2,4- diacetylphloroglucinol producing, overproducing and nonproducing Pseudomonas fluorescens F113 in the rhizosphere of pea[J]. Microbial Ecology. 2001,42,193-200.
[31] Naseby D C, Pascual J A , Lynch J M. Carbon fractions in the rhizosphere of pea inoculated with 2,4- diacetylphloroglucinol producing and non- producing Pseudomonas fluorescens F113[J]. Journal of Applied Microbiology,1999,87:173-181.
[32] Brimecombe M J, De L F, Lynch J M. Effect of introduced Pseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea[J]. Microbial ecology,1999,38(4):387-397.
[33] Chapon A, Guillerm A Y, Delalande L, et al. Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus[J]. European Journal of Plant Pathology,2002,108(5):449-459.
[34] Naseby D C, Way J A, Bainton N J, et al. Biocontrol of Pyhtium in the pea rhizosphere by antifungal metabolite producing and nonproducing Pseudomonas strains[J].Journal of Applied Microbiology, 2001,90:421-429.
[35] Mo?nne-Loccoz Y, Tichy H V, O'Donnell A, et al. Impact of 2, 4- Diacetylphloroglucinol- Producing Biocontrol StrainPseudomonas fluorescens F113 on Intraspecific Diversity of Resident Culturable Fluorescent Pseudomonads Associated with the Roots of FieldGrown Sugar Beet Seedlings[J]. Applied and environmental microbiology,2001,67(8):3418-3425.
[36] 杨威,蒋志强,郭亚辉,等.Bacillus cereus CH2对茄子黄萎病的田间防治效果研究以及对根围微生态群落结构的影响[J].微生物学通报,2011,38(5):715-721.
[37] Gao G, Yin D, Chen S, et al. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE[J].PloS one, 2012, 7(2):e31806.
[38] 朱伟杰,王楠,郁雪平,等.生防菌Pseudomonasfluorescens2P24对甜瓜根围土壤微生物的影响[J].中国农业科学,2010,43(7):1389- 1396.
[39] Scherwinski K, Grosch R, Berg G. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short- term effects on nontarget microorganisms[J].FEMS microbiology ecology,2008,64(1):106-116.
[40] Ferreira L, Molina J C, Brasil C, et al. Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms [J]. Plant and soil,2003,256(1):161-168.
[41] 尹淑丽,张丽萍,张根伟,等.复合微生态菌剂对黄瓜根际土壤微生物数量及酶活的影响[J].微生物学杂志,2012,01:23-27.
[42] 陈雪丽,王光华,金剑,等.两株芽孢杆菌对黄瓜和番茄根际土壤微生物群落结构影响[J].生态学杂志,2008,27(11):1895-1900.
[43] 夏飞.生防枯草芽孢杆菌、荧光假单胞杆菌及哈茨木霉菌对西瓜根围土壤细菌群落影响规律的研究[D].上海:华东理工大学, 2012.37-42.
[44] 尹丹韩.生防菌 P.fluorescens2P24、 CPF10、 T.harzianumT4 对黄瓜根围土壤细菌群落的影响[D].上海:华东理工大学,2011:46-49.
[45] Girlanda M, Perotto S, Moenne- Loccoz Y, et al. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere[J]. Applied and environmental microbiology, 2001,67(4):1851-1864.
[46] Glandorf D, Verheggen P, Jansen T, et al. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field- grown wheat[J].Applied and environmental microbiology,2001,67(8):3371-3378.
[47] 李艳琴,史通麟,刘彬彬.转基因生防菌308R(pCPP430)对番茄根围菌群的影响[J].微生物学通报,2007,34(4):654-658.
[48] Bruce A, Caldwell. Enzyme activities as a component of soil biodiversity: A review[J]. Pedobiologia,2005,49:637-644.
[49] 刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学通报, 2011,27(21):1-7.
[50] 胡斌,段昌群,王震洪,等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604?608.
[51] 尹淑丽,麻耀华,张丽萍,等.不同生防菌对黄瓜根际土壤微生物数量及土壤酶活性的影响[J].北方园艺,2012,01:10-14.
[52] 张昕,张立钦,林海萍,等.引入黄瓜根围的2株生防菌株的生态效应[J].浙江林学院学报,2007,24(6):649-653.
[53] 孙正祥,王丰,周燚.生防菌XG-1对西瓜根际微生物群落及酶活的影响[J].河南农业科学,2013,42(4):107-110.
[54] 曹恩珲,侯宪文,李光义,等.复合菌剂对盆栽番茄土壤理化性质及微生物活性的影响[J].生态环境学报,2011,20(5):875-880.

文章所在专题

植物保护

热点综述

20

Accesses

0

Citation

Detail

段落导航
相关文章

/