为了深入认识‘衡观35’重要农艺性状分子机理,通过基因功能标记或与基因紧密连锁的微卫星标记的检测,结合植株的田间表现,分析了国审小麦品种‘衡观35’含有的控制重要农艺性状的关键基因。结果表明,‘衡观35’含有1BL/1RS易位染色体,这与其丰产性和较广泛的生态适应性是一致的。‘衡观35’含2个隐性春化基因(vrn-A1和vrn-B1)和1个显性春化基因(Vrn-D1),表明其主要为冬性品种,抗寒性好,同时又具有春天早发和生长快的特点。‘衡观35’含有对光周期不敏感的Ppd-D1a基因,这与其具有早熟和可在多个生态区广泛种植的特性是一致的。‘衡观35’含Rht1、Rht2、Rht4和Rht8四个矮秆基因的分子标记,这可能其株高较低的重要遗传基础。‘衡观35’含有Pm4和Pm16基因的分子标记,在田间表现出较好的白粉病抗性。‘衡观35’含有YrTp2基因的分子标记,在田间上表现出较好的条锈病抗性。以上信息为深入认识‘衡观35’重要农艺性状分子机理提供了线索,对在未来小麦遗传改良中高效利用该品种的重要基因具有实用价值。
Abstract
To study valuable information on a wide range of important agronomic genes in ‘Hengguan 35’, by using functional or genetically linked molecular markers, combined with field observations, we detected and analyzed the genes controlling important agronomic traits in the national certified wheat variety ‘Hengguan 35’. The results showed that, ‘Hengguan 35’ was 1BL/1RS translocation line, which was consistent with its high yield level and wide environmental adaptability. ‘Hengguan 35’ carried two recessive vernalization genes (vrn-A1 and vrn-B1) and one dominant vernalization gene (Vrn-D1), which agreed well with its strong tolerance to cold stress in winter and early and fast resumption of growth in Spring. ‘Hengguan 35’ contained the photoperiod insensitive gene Ppd-D1a, which was in line with its relatively early maturity in many wheat cultivation regions. ‘Hengguan 35’ probably had four dwarf genes (Rht1, Rht2, Rht4, and Rht8), which was in accordance with its lower plant height and improved tolerance to lodging. ‘Hengguan 35’ probably hosted Pm4 and Pm16 genes, which may correspond with itsfield resistance to powdery mildew. ‘Hengguan 35’ probably harbored YrTp2 gene, which may account for its field resistance to stripe rust disease. Our study provides valuable information on a wide range of important agronomic genes in ‘Hengguan 35’, which may facilitate the use of this germplasm for improving wheat yield and environmental adaptability in further research.
关键词
小麦;‘衡观35’; 功能 (或连锁) 标记; 抗旱; 高产; 分子标记辅助育种
{{custom_keyword}} /
Key words
wheat;‘Hengguan 35’; functional or linked markers of some genes; drought; high yield; molecular marker assistant breeding
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张俊,陈桂亚,杨文发.国内外干旱研究进展综述[J].人民长江,2011, 42(10):65-69.
[2] 景蕊莲.作物抗旱节水研究进展[J].中国农业科技导报,2007,9(1): 1-5.
[3] Zhang J. China’ s success in increasing per capita food production [J]. J Exp Bot,2011(132):1-5.
[4] Wang Y, Sheng L, Li K, et al. Analysis of present situation of water resources and counter measures for sustainable development in China[J]. Water Resources,2008(19):10-14.
[5] McIntosh R A, Gale M D, Hart G E. Catalogue of gene symbols for wheat. In: Proceedings of the 8th International Wheat Genetics Symposium[M]. Beijing: China Agricultural Science and Technology Press,1993:1330-1550.
[6] Moreno- Seville B, Baenziger P S, Peterson C J, et al. The 1B/1R translocation: agronomic performance of F3- derived lines from a winter wheat cross[J]. Crop Sci,1995(35):1051-1055.
[7] Villareal R L, Rajarm S, Mujeeb- Kazi A, et al. The effect chromosome 1B/1R translocation on the yield potential of certain spring wheats[J]. Plant Breed,1991(106):77-81.
[8] Liu Y, He Z, Appels R, et al. Functional markers in wheat: current status and future prospects[J]. Theor Appl Genet,2012(125):1-10.
[9] Ellis M H, Rebetzke G J, Azanza F, et al. Molecular mapping of gibberellin- responsive dwarfing genes in bread wheat[J]. Theor Appl Genet,2005(111):423-430.
[10] Korzun V, R?der M S, Ganal M W, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat (Part Ⅰ): Molecular mapping of Rh t8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L)[J]. Theor Appl Genet,1998(96):1104-1109.
[11] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J]. Nucleic Acids Res,1991(19):1349.
[12] Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proc Natl Acad Sci USA,2003 (100):6263-6268.
[13] Fu D, Szücs P, Yan L. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat [J]. Mol Genet Genomics,2005(273):542-565.
[14] Beales J, Turner A, Griffiths S. A pseudo- response regulator is misexpressed in the photoperiod insensitive Ppdl- D1a mutant of wheat (Triticum aestiuum L.)[J]. Theor Appl Genet,2007(115):721- 733.
[15] Ellis M H, Spielmeyer W, Rebetzke G J, et al.“Perfect”markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat[J]. Theor Appl Genet,2002(105):1038-1042.
[16] 王瑞,王俊美,伊艳杰,等.2个小麦品系抗白粉病基因的分子鉴定[J].河南农业科学,2007(3):53-55.
[17] Chen X M, Luo Y H, Xia X C, et al. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis[J]. Plant Breed,2005(24):225-228.
[18] 殷学贵,尚勋武,庞斌双,等.A-3中抗条锈新基因 YrTp1和 YrTp2的分子标记定位分析[J].中国农业科学,2006,39(1):10-17.
[19] He Z H, Rajaram S, Xin Z Y, et al. A history of wheat breeding in China[Z]. Mexico, DF: CIMMYT,2001
[20] 周阳,何中虎,张改生,等.1BL/1RS 易位系在我国小麦育种中的应用[J].作物学报,2004,30(6):531-535.
[21] Pugsley A T. A genetic analysis of the springy-wheat habit in wheat [J]. Australian J Agri Research,1971(22):21-31.
[22] Stelmakh A F. Genetics of growth habit and duration of life cycle in common wheat[J]. SelectsijaI Semenovodstvo,1981(48):8-15.
[23] Worland A J, Jarvis M G, Holt L M. Evidence for a direct causal effect of low molecular weight subunits of glutenins on gluten viscoelaticity in durum wheats[J]. J Cereal Sci,1987(6):103-118.
[24] Zhang K P, Zhang Y T, Chen G F, et al. Genetic analysis of grain yield and leaf chlorophyll content in common wheat (Triticum aestivum L.)[J]. Cereal Res Com,2009(37):499-511.
[25] Scarth R, Law C N. The control of daylength response in wheat by the group 2 chromosomes [J]. Pflanzen zuchtung,1984(92):140-150.
[26] Guo Z A, Song Y X, Zhou R H, et al. Discovery, evaluation and distribution of haplotypes of the wheat Ppd- D1 gene[J]. New Phytologist,2010(185):841-851.
[27] 刘玉平,李建平,兰素缺,等.光周期迟钝基因对冬小麦农艺性状的影响[J].华北农学报,2001,16(4):59-64.
[28] Evans L T. Feeding the ten billion: plants and population growth[M]. Cambridge University Press, Cambridge, UK.1998.
[29] Allan R E. Agronomic comparison between Rhtl and Rht2 semidwarfing genes in winter wheat[J]. Crop Sci,1989(29):1103-1108.
[30] Flintham J E, Borner A, Worland A J, et al. Optimizing wheat grain yield: effects of Rht (gibberellin- insensitive) dwarfing genes[J]. J Agric Sci,1997(128):11-25.
[31] Rebetzke G J, Richards R A, Fischer V M, et al. Breeding long coleoptile, reduced height wheats[J]. Euphytica,1999(106):159-168.
[32] B?rner A, Schumann E, Furste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.)[J]. Theor Appl Genet,2002(105):921- 936.
[33] Huang X Q, C?ster H, Ganal M W, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2003(106):1379-1389.
[34] Narasimhamoorthy B, Gill B S, Fritz A K, et al. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population[J]. Theor Appl Genet,2006(112):787-796.
[35] Kumar K, Kulwal P L, Balyan H S, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat[J]. Mol Breed,2007(19):167-177.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}