基于HJ1A-HSI超光谱影像的县域耕地土壤盐渍度预测研究

朱高飞 范燕敏 盛建东 武红旗 付彦博

中国农学通报. 2014, 30(8): 289-294

中国农学通报 ›› 2014, Vol. 30 ›› Issue (8) : 289-294. DOI: 10.11924/j.issn.1000-6850.2013-1315
农业科技信息

基于HJ1A-HSI超光谱影像的县域耕地土壤盐渍度预测研究

  • 朱高飞 范燕敏 盛建东 武红旗 付彦博
作者信息 +

Estimation of Soil Salinity in Cltivated Land at County Scale Based on HJ1A-HIS Hyperspectral Image

Author information +
History +

摘要

针对目前干旱半干旱地区存在的土壤盐渍化问题,以北疆典型盐渍化地区玛纳斯县为研究区,以HJ1A-HSI超光谱影像为主要数据源,结合实测耕地土壤含盐量,分析光谱反射率及其变化形式与盐分含量的相关性,筛选耕地盐分响应的敏感波段,利用多元回归分析方法,建立基于环境卫星影像的耕地含盐量定量反演模型。结果表明,盐分的HSI影像响应波段均位于可见光与近红外波段间,以500~549 nm和696~776 nm范围最佳,相关系数均大于0.5;HSI反射率对数(lgP)预测模型精度最高,可实现对研究区耕地土壤盐分遥感反演。

Abstract

Soil salinization is widely distributed in the arid and semi-arid region of China. The typical saline area in northern of Xinjiang, Manas County was taken as the study area. The environmental satellite hyperspectral imaging (HSI) was taken as the main data source, combined with the measured cultivated soil salinity. The author analyzed correlation between spectral reflectance and salt content and screened sensitive band of salinity response in farmland, established farmland salt content quantitative inversion model based on environmental satellite images by multiple linear regression. The results showed that: salt response bands of HSI image located in the visible and near-infrared bands, between 500 to 549 nm and 696 to 776 nm range, correlation coefficients were greater than 0.5. The best HSI reflectivity (lgP) predictive accuracy of the model could be realized on the area of farmland soil salinity remote sensing inversion.

关键词

土壤盐分; 超光谱影像; 定量反演

Key words

soil salinity; hyperspectral image; quantitative inversion

引用本文

导出引用
朱高飞 范燕敏 盛建东 武红旗 付彦博. 基于HJ1A-HSI超光谱影像的县域耕地土壤盐渍度预测研究. 中国农学通报. 2014, 30(8): 289-294 https://doi.org/10.11924/j.issn.1000-6850.2013-1315
Estimation of Soil Salinity in Cltivated Land at County Scale Based on HJ1A-HIS Hyperspectral Image. Chinese Agricultural Science Bulletin. 2014, 30(8): 289-294 https://doi.org/10.11924/j.issn.1000-6850.2013-1315

参考文献

[1] Hussain N, Salim A, Jarnaan R, et al. Causes, origin, genesis and extent of soil salinity in the sultanate of oman[J].Pak. J. Agri.Sci., 2006,43(1):1-6.
[2] 李新国,樊自立,李会志,等.开都河下游灌区土壤盐渍化特征分析[J].干旱地区农业研究,2011,29(02):147-151.
[3] 屈永华,段小亮,高鸿永,等.内蒙古河套灌区土壤盐分光谱定量分析研究[J].光谱学与光谱分析,2009,29(5):1362-1366.
[4] 翁永玲,戚浩平,方洪宾,等.基于 PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J].土壤学报,2010,47(6):1254-1263.
[5] 扶卿华.土壤盐分含量的遥感反演及其在东亚飞蝗研究中的应用[D].南京:南京师范大学,2005:1-48.
[6] Dehaan R L, Taylor G R. Field- derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J]. Remote Sensing of Environment,2002,80(3):406-418.
[7] 白照广.中国的环境与灾害监测预报小卫星星座 A/B星[J].中国航天,2009,(5):10-15.
[8] 徐京.我国环境与灾害监测预报小卫星系统概况[J].中国航天, 2002(7):10-15.
[9] 王久忠.玛纳斯县志[M].新疆大学出版社,1993:1-525.
[10] 崔文采.新疆土壤[M].北京:科学出版社,1996:1-601.
[11] 周广柱,王翠珍,杨锋杰,等.对数变换与小波变换用于野外采集植物波谱降噪[J].红外与毫米波学报,2009,28(4):316-320.
[12] Cloutis E A. Hyperspectral geological remote sensing: Evaluation of analytical techniques[J].International Journal Remote Sensing, 1996,17(12):2215-2242.
[13] Huang Z, Turner B J, Dury S J, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis [J].Remote Sensing of Environment,2004,93:18-29.
[14] 顾晓鹤,王堃,潘瑜春,等.基于 HJ1A-HSI超光谱影像的耕地有机质遥感定量反演[J].地理与地理信息科学,2011,27(6):69-73.
[15] 曹庆元.北部湾沿海红树林生物量和碳贮量的遥感估算[D].北京:中国林业科学院,2010:1-123.
[16] 扶卿华,倪绍详,王世新,等.土壤盐分含量的遥感反演研究[J].农业工程学报,2007,23(1):48-54.
[17] 樊彦国,侯春玲,朱浩,等.基于 BP神经网络的盐渍土盐分遥感反演模型研究[J].地理与地理信息科学,2010,26(6):24-27.
[18] 张飞,塔西普拉提·特拜依,丁建丽,等.干旱区绿洲土壤盐渍化程度遥感定量评价[J].生态环境学报,2009,18(5):1822-1829.
[19] 牛博.干旱区土地盐渍化动态演变的遥感分析——以新疆于田县为例[D].新疆大学,2005:1-70.

文章所在专题

耕地保护

14

Accesses

0

Citation

Detail

段落导航
相关文章

/