木薯淀粉分支酶SBEⅠ反义基因遗传转化木薯的研究

郭运玲 孔华 尹奇 左娇 黄启星 贺立卡 郭安平

中国农学通报. 2013, 29(9): 149-154

中国农学通报 ›› 2013, Vol. 29 ›› Issue (9) : 149-154. DOI: 10.11924/j.issn.1000-6850.2012-2104
生物技术科学

木薯淀粉分支酶SBEⅠ反义基因遗传转化木薯的研究

  • 郭运玲 孔华 尹奇 左娇 黄启星 贺立卡 郭安平
作者信息 +

Genetic Transformation of Cassava with Its SBEⅠ Antisense Gene

Author information +
History +

摘要

旨在获得转淀粉分支酶反义SBEⅠ基因的‘华南木薯8号’转基因植株,为利用转基因技术改良木薯淀粉品质打下基础。在建立了木薯从胚状体子叶到完整植株的再生体系的基础上,用块根特异表达启动子Sporamin驱动的木薯淀粉分支酶SBEⅠ反义基因,通过农杆菌介导法对‘华南木薯8号’进行遗传转化。共接种‘华南木薯8号’子叶517块,获得7株生长良好的转化再生植株,转化再生频率达到1.35%。经PCR检测,其中5株转化再生植株扩增出目的条带,初步证实木薯淀粉分支酶SBEⅠ反义基因已整合进了‘华南木薯8号’基因组中。通过农杆菌介导法可以将淀粉分支酶SBEⅠ反义基因导入到‘华南木薯8号’基因组中,获得了5株转基因植株。

Abstract

This study aimed to gain transgenic‘SC-8’cassava with the transformation of starch branching enzyme (SBEⅠ) antisense gene, and provide basis for using transgenic technology in the improvement of cassava starch quality. Based on the cassava regeneration system which could take the embryoid cotyledon to complete plants, the SBEⅠantisense gene was transformed by Agrobacterium-mediated transformation and the tuber-specific promoter Sporamin was used. 517‘SC-8’cassava cotyledons were inoculated which resulted in 7 well grown regenerated plants with a transformation rate of 1.35%. By PCR analysis, the SBEⅠantisense gene products were amplified in 5 regenerated plants which could provide evidence for the combination of SBEⅠantisense gene in cassava genome. The SBEⅠantisense gene can be successfully transformed to‘SC-8’cassava by the Agrobacterium-mediated transformation method. 5 transgenic‘SC-8’cassava plants were obtained.

关键词

木薯; 淀粉分支酶; 反义基因; 遗传转化

Key words

cassava; starch branching enzyme; antisense gene; genetic transformation

引用本文

导出引用
郭运玲 孔华 尹奇 左娇 黄启星 贺立卡 郭安平. 木薯淀粉分支酶SBEⅠ反义基因遗传转化木薯的研究. 中国农学通报. 2013, 29(9): 149-154 https://doi.org/10.11924/j.issn.1000-6850.2012-2104
Genetic Transformation of Cassava with Its SBEⅠ Antisense Gene. Chinese Agricultural Science Bulletin. 2013, 29(9): 149-154 https://doi.org/10.11924/j.issn.1000-6850.2012-2104

参考文献

[1] 黄毓文,刘殷勤.国际热带农业中心的木薯研究[J].热带亚热带植物学报,1995,3(2):93-100.
[2] 高振宇,黄大年.植物支链淀粉合成的关键酶——淀粉分支酶[J].生物工程进展,1998,18(6):29-31.
[3] Fernie A R, Willmitzer L, Trethewey R N. Sucrose to starch: a transition in molecular plant physiology[J]. Trends in Plant Science, 2002,7(1):35-41.
[4] Safford R, Jobling S A, Sidebottom C M, et al. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of starch[J]. Carbohydrate Polymers,1998(35):155-168.
[5] Flipse E, Suurs L, Keetels C J A M, et al. Ⅰntroduction of sense and antisense cDNA for branching enzyme in the amylose-free potato mutant leads to physico-chemica changes in starch[J]. Planta, 1996(198):340-347.
[6] Jobling S A, Schwall G P, Westcott R J, et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBEA[J]. The Plant Journal,1999,18(2): 163-171.
[7] Schwall G P, Safford R, Westcott R J, et al. Production of veryhigh-amylose potato starch by inhibition of SBE A and B[J]. Nature Biotechnology,2000(18):551-554.
[8] Hofvander P, Andersson M, Larsson C T, et al. Field performance and starch characteristics of high- amylose potatoes obtained by antisense gene targeting of two branchng enzymes[J]. Plant Biotechnology Journal,2004(2):311-320.
[9] 张毅,刘彦,王红,等.转青蒿反义鲨稀合酶基因对烟草鲨稀合酶基因表达的影响[J].农业生物技术学报,2005,13(4):416-422.
[10] 吴方喜,谢华安,苏军,等.rbe正、反义基因改变籼稻直链淀粉含量的研究[J].附件农业学报,2006,21(2):150-153.
[11] 刘永巨,马俊莲,张子德,等.农杆菌介导法将ACC合成酶和氧化酶反义基因转入日本甜柿的研究 [J]. 湖北农业科学,2009(8): 1800-1803.
[12] 姚庆荣,郭运玲,孔华,等.影响根癌农杆菌介导的木薯遗传转化因素分析[J].植物研究,2012,32(2):227-231.
[13] Li H Q, Sautter C, Potrykus Ⅰ, et al, Genetic Transformation of Cassava (Manihot esculenta Crantz) [J]. Nature Biotechnol,1996 (14):736-740.
[14] 张树珍,汤火龙,杨本鹏,等.康乃馨 ACC氧化酶反义基因遗传转化康乃馨的研究[J].园艺学报,2003,30(6):699-702.
[15] 徐军望,李旭刚,朱祯.基因工程改良淀粉品质[J].生物技术通报, 2000(1):11-19.
[16] Visser R G F, Somhorst Ⅰ, Kuipers G J, et al. Ⅰnhibition of the expression of the gene for granule-bound starch synthase in potato by antisense corn tructs[J]. Mol Gen Genet,1991(225):289-296.
[17] Salehuzzaman S, Jacobsen E, Visser R G F. Ⅰ solation and characterzation of a cDNA encoding granule-bound starch synthase in cassava and its antisense expression in potato[J]. Plant Mol Bio, 1993(23):947-962.
[18] Safford R, Jobling S A, Sidebottom C M, et al. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of starch[J]. Carbohydrate Polymers,1998(35):155-168.
[19] Jobling S A, Schwall G P, Westcott R J, et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A[J]. The Plant Journal,1999,18(2): 163-171.
[20] Schwall G P, Safford R, Westcott R J, et al. Production of veryhigh-amylose potato starch by inhibition of SBE A and B[J]. Nature Biotechnology,2000(18):551-554.
[21] Hofvander P, Andersson M, Larsson C T, et al. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branchng enzymes[J]. Plant Biotechnology Journal,2004(2):311-320.

35

Accesses

0

Citation

Detail

段落导航
相关文章

/