基于混沌时间序列的马尾松角胫象林间诱捕数量短期预测
Short-term Forecasting Trapping Amount of Shirahoshizo patruelis in Forest Based on Chaotic Time Series
为了对马尾松角胫象的防治及松材线虫病的控制提供技术支持,利用混沌时间序列的基本原理,分析马尾松角胫象林间诱捕序列,并重构其相空间及计算最大Lyapunov指数。结果表明:马尾松角胫象林间诱捕序列具有混沌特性。在此基础上,应用加权一阶局域预测模型对马尾松角胫象种群动态进行短期预测,结果显示在最长可预报时间尺度内该模型的预测成功率为100%。
In order to supply technical support for control of Shirahoshizo patruelis (Voss) and Bursaphelenchus xylophilus (Steiner & Bubrer) Nickle, the author used the basic principles of chaotic time series, by analyzing the trapping series of Shirahoshizo patruelis (Voss) in forest and then reconstructed the phase space and calculated the largest Lyapunov exponent. The results showed that the trapping series of Shirahoshizo patruelis (Voss) in forest had chaotic characteristics. On this basis, the short-term prediction of Shirahoshizo patruelis (Voss) population dynamics with weighted one-rank local-region model showed that the prediction success rate in the largest temporal scale was 100%.
/
〈 |
|
〉 |