定量结构和性质关系(QSPR)在结构优化中起着重要的作用,它通过优化选择最可能的样本从而减少了化合物合成的数量。该文的目的是介绍QSPR的发展概况,为开发新药提供信息。综述了构建QSPR的方法,分别从分子结构的相关描述子,性质的信息数据,和两者间有意义的连接三个方面进行了讨论。
Abstract
Quantitative structure-property relationship(QSPR) plays a important role in lead structure optimization. It decreases the number of compounds synthesized by facilitating the selection of the most promising examples. The purpose of this paper is to provide a broad overview of the development of QSPR, which will be very useful for development of novel pharmaceuticals. The components involved in the construction of QSPR are reviewed, including discussed various types of structural descriptors and properties, together with techniques to establish correlations between the two.
关键词
定量结构和性质关系;结构描述子
{{custom_keyword}} /
Key words
Quantitative structure-property relationship;Structural descriptors
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Hansch C, Leo A. Exploring QSAR. J. Am. Chem. Soc. 1997,97:2552-2556.
[2]Charton M, Murray W J. Steric effects. Base catalysed ester hydrolysis. J. Am. Chem. Soc. 1997,97:3691-3693.
[3]Verloop A. Development and application of new steric substituent parameters in drug design. Drug design. 1976,58:165-207.
[4]Randic M. On characterization of molecular Branching. J. Am. Chem. Soc. 1975,97:6609-6615.
[5]Kier, L. B, Hall L H, Randic, M. Molecular connectivity 1: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 1975,64:1971-1974.
[6]Kier L. B, Murray, W. J, Hall, L H. Molecular connectivity 4: Relationship to biological activity. J. Med. Chem. 1975,18:1272-1274.
[7]Randic, M. Molecular profiles. Novel geomytry-dependent molecular descriptors. New J. Chem. 1995,19:781-791.
[8]Gasteiger J. MS-WHIM scores for amino acids: A new 3D-description for peptide QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 1999,39:525-533.
[9]Karelson M. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996,96:1027-1043.
[10]许禄.化学计量学方法.北京:科学出版社.1995.62-71.
[11]Geladi, P.; Kowalski, B. R. Partial least-square regression: a tutorial. Anal. Chem. Acta. 1986,185:1-17.
[12]Baroni M, Clementi S, Cruciani G. Predictive ability of regression models part 2: selection of the best predictive PLS model. J. Chemometr. 1992,6:347-356.
[13]Tmej C, Schaad L. compatibility of the Free-Wilson and Hansch quantitative structure-activity relations. J. Med. Chem. 1981,24:900-902.
[14]Hansch C. Strategy in drug design. Cluster analysis as an aid in the selection of substituent. J. Med. Chem. 1973,16:1217-1222.
[15]Cruciani G, Watson K A. Comparative molecular field analysis using GRID force field and GOLPE variable selection methods in a study of inhibitors of glycogen. J. Med. Chem. 1994,37:2589-2601.
[16]Kovesdi I, Manallack D T. Application of neural network s in structure activity relationships. Med. Res. Rev. 1999,19:249-269.
[17]Rogers D, Hopfinger A J. application of GFA to QSAR and QSP. J. Chem. Soc. 1994,34:854-866.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}