稻瘟病菌SSR反应体系的优化

稻瘟病菌SSR反应体系的优化

中国农学通报. 2007, 23(6): 174-174

中国农学通报 ›› 2007, Vol. 23 ›› Issue (6) : 174-174. DOI: 10.11924/j.issn.1000-6850.0706174
生物技术科学

稻瘟病菌SSR反应体系的优化

  • 稻瘟病菌SSR反应体系的优化
作者信息 +

Optimization of SSR Reaction System of Pyricularia grisea

  • Zang Wei,, Zhang Lanlan, Zhang Guomin, Li Zhugang, Zhang Shuyuan,Sun Jianqiu,, Yan Shanchun
Author information +
History +

摘要

稻瘟病菌SSR检测是分子标记辅助育种的一项重要技术。为优化SSR反应体系,以稻瘟病菌菌株504为供试材料,采用单因素筛选法及L9(34)正交试验设计,研究了稻瘟病菌SSR分析中PCR反应体系的主要成分对扩增结果的影响。结果表明:在总体积为20μL的PCR反应中,Taq DNA聚合酶的最适用量为1.0U;Mg2+、dNTP和引物的最适终浓度分别为1.0mmol/L、100μmol/L和0.4μmol/L。利用该体系进行扩增,所得谱带清晰、稳定、非特异性带少。

Abstract

SSR detection is an important technique of molecular marker for assisted breeding in Pyricularia grisea. In order to optimize SSR-PCR reaction system, the main factors affecting amplication results were studied with single factor selection and L9(34) orthogonal design. The results showed that the optimal reaction system was as follows: the 20μL reaction system contained TaqDNA polymerase 1.0U, Mg2+ 1.0 mmol/L, dNTP 100 μmol/L and Primer 0.4μmol/L. Using this system, amplication bands were clear, standard and non-especial bands were shorter.

关键词

稻瘟病菌;SSR;体系优化

Key words

Pyricularia grisea;SSR;System optimization

引用本文

导出引用
稻瘟病菌SSR反应体系的优化. 稻瘟病菌SSR反应体系的优化. 中国农学通报. 2007, 23(6): 174-174 https://doi.org/10.11924/j.issn.1000-6850.0706174
Zang Wei,, Zhang Lanlan, Zhang Guomin, Li Zhugang, Zhang Shuyuan,Sun Jianqiu,, Yan Shanchun. Optimization of SSR Reaction System of Pyricularia grisea. Chinese Agricultural Science Bulletin. 2007, 23(6): 174-174 https://doi.org/10.11924/j.issn.1000-6850.0706174

参考文献

[1]宋国华,刘田福,张建红,等.微卫星DNA分子标记及其在实验动物遗传分析中的应用.山西医科大学学报,2004,35(4):381-383.
[2]郭瑞星,刘小红,荣延昭,等.植物SSR标记的发展及其在遗传育种中的应用.玉米科学,2005,13(2):8-11.
[3]朴红梅,王玉民,刘宪虎,等.简单重复序列的研究与应用.吉林农业科学,2004,29(6):11-15.
[4]李毳,李继萍,柴宝峰,等.微卫星标记的发展及植物研究中的应用.郑州航空工业管理学院学报社会科学版,2004,23(6):199-200.
[5]S Dreisigacker, P Zhang, M L Warburton, et al. Genetic Diversity among and within CIMMYT Wheat Landrace Accessions Investigated with SSRs and Implications for Plant Genetic Resources Management. Crop Science, 2005,45:653-661.
[6]J R Coburn, S V Temnykh, E M Paul, et al. Design and Application of Microsatellite Marker Panels for Semiautomated Genotyping of Rice (Oryza sativa L.). Crop Science, 2002,42:2092-2099.
[7]M R Lemes, R P V Brondani, D Grattapaglia. Multiplexed Systems of Microsatellite Markers for Genetic Analysis of Mahogany, Swietenia macrophylla King (Meliaceae), a Threatened Neotropical Timber Species. The Journal of Heredity, 2002,93(4):287-291.
[8]K J Liu, M Goodman, S Muse, et al. Genetic Structure and Diversity among Maize Inbred Lines as Inferred from DNA Microsatellites. Genetics, 2003,165(12):2117-2128.
[9]何月秋.真菌菌丝体培养和提取DNA方法的改进.菌物系统,2000,19(3):434.
[10]C Kaye, J Milazzo, S Rozenfeld, et al. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genetics and Biology, 2003,40(3):207-214.
[11]刘海河,侯喜林,张彦萍.西瓜ISSR-PCR体系的正交优化研究.果树学报,2004,21(6):615-617.
[12]S Sato, S Isobe, E Asamizu, et al. Comprehensive Structural Analysis of the Genome of Red Clover(Trifolium pratense L.). DNA Research, 2005,12:301-364.
[13]孙伟.正交设计微卫星PCR扩增条件的探讨.草食家畜,2001,21(2):4-5.

Accesses

Citation

Detail

段落导航
相关文章

/