
天然抗氧化剂花青素在饲料添加剂中的应用
Application of Natural Antioxidant Anthocyanins in Feed Additives
花青素作为一种天然的生物活性物质,在畜禽养殖业中应用广泛。综述了目前花青素的研究进展,并从绿色养殖角度阐述了花青素在畜禽养殖方面的应用情况,以及其对提高养殖效益的重要作用。推广使用花青素等饲料添加剂将成为未来畜禽养殖行业中的一个重要趋势,有助于实现养殖业的可持续发展。
Anthocyanin, as a natural bioactive substance, is widely used in the livestock and poultry breeding industry. This article reviews the current research progress on anthocyanins and discusses their application in livestock and poultry breeding from the perspective of green breeding and their important role in improving breeding benefits. The promotion of feed additives such as anthocyanins will become an important trend in the future livestock and poultry breeding industry, contributing to the industry's sustainable development.
花青素 / 饲料添加剂 / 可持续 / 畜禽养殖 {{custom_keyword}} /
anthocyanins / feed additives / sustainable / livestock and poultry breeding {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016, 51 (1):107-119.
花青素是种子植物呈色的重要色素, 由一系列结构基因编码的酶(CHS、CHI、F3H、F3'H、F3'5'H、DFR、ANS和3GT)催化而成, 随后经过各种修饰被转运至液泡等部位储存。各类器官中差异表达的MYB、bHLH和WDR三种调控因子通过形成MBW复合体直接正调控以上结构基因的表达。这个过程涉及的基因变异常会导致植物的各种颜色变异。在生活中人们广泛利用这些变异品种, 取其丰富色味。造成颜色变异的具体分子机制在很多情况下还不清楚, 但日益积累的个例研究为其中的规律性提供了基础数据。该文概述了花青素的合成、转运过程及其转录调控机制, 探讨了研究颜色变异品种的常用思路及方法。在总结近年工作的基础上, 对生活中常见蔬菜、水果和花卉的颜色变异品种的分子机制进行了综述。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李鲁华, 王忠妮, 任明见, 等. 谷类作物中植物激素调控花青素合成的研究进展[J]. 山地农业生物学报, 2022, 41(4):62-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
严莉, 陈建伟, 王翠平, 等. 黑果枸杞WD40编码基因LrAN11的克隆及表达分析[J]. 核农学报, 2017, 31(11):2103-2112.
WD40蛋白广泛存在于真核生物中,是一类高度保守的蛋白家族,具有广泛的生物化学和细胞生物学功能。为探索黑果枸杞LrAN11的功能,采用同源克隆的方法克隆了黑果枸杞WD40蛋白基因,将其命名为LrAN11,GenBank登录号:KY131959。生物信息学分析结果表明,该基因的编码区长1 029 bp,编码 342 个氨基酸,蛋白分子量为38.3 kD,理论等电点为4.95,含有5个WD40基序,属于WD40类蛋白基因家族;经预测LrAN11定位于细胞质中,该基因编码的氨基酸序列具有较高的保守性,与马铃薯、番茄、甜椒和美花烟草具有较近的亲缘关系;定量RT-PCR检测表明,LrAN11基因在黑果枸杞各组织中均有表达,其中在青果中的相对表达量最高,在根和紫果中次之,而在黑果中表达最低,表明LrAN11可能参与黑果枸杞花青素的生物合成的调控;在韩国枸杞和0901枸杞品种中表达显著,在其他14个枸杞品种中表达均较低且无显著差异性(P>0.05),说明LrAN11的表达具有品种特异性。此外,随着NaCl处理时间的延长,该基因的表达量先降低后升高,且在2、12和24 h的表达量与对照相比存在显著差异性(P<0.05),说明LrAN11可能参与黑果枸杞对盐胁迫的响应。本研究结果为进一步阐明黑果枸杞LrAN11基因的功能及其在黑果枸杞遗传改良中的应用奠定了基础。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
盛建军, 李想, 何永美, 等. UV-B辐射对花青素合成代谢的影响及分子机理[J]. 植物生理学报, 2019, 55(7):949-958.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
李跃, 李国瑞, 陈永胜. 微生物代谢工程在花色苷生产过程中的应用现状和前景[J]. 食品科学, 2020, 41(13):260-266.
随着微生物代谢工程技术在合成生物学等领域的广泛应用,该技术已被用于提取多种植物天然产物。花色苷是一种水溶性天然色素,能使花和果实着色,已被广泛应用于食品和化妆品行业。目前,花色苷主要从植物材料中提取,但是提取的花色苷具有纯度低和性质不稳定等缺点,因此利用微生物代谢工程技术替代传统方法提取花色苷具有重要意义。本文阐述了工程菌合成花色苷的研究进展,对酶的选择、运输调节、尿嘧啶核苷-5’-二磷酸葡萄糖供应量的调控以及工艺优化等方面进行综述。对花色苷合成代谢途径的了解将为实现微生物生产花色苷的产业化提供重要信息。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李慧敏, 贾斌, 李霞, 等. 合成芳香族化合物的酵母底盘改造策略[J]. 中国生物工程杂志, 2022, 42(10):80-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
李玲玲, 刘雪, 邱泽天, 等. 植物多酚的微生物合成[J]. 生物工程学报, 2021, 37(6):2050-2076.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
唐罗, 陈晓霞, 陈军, 等. 桑椹花青素加工稳定性及其应用研究进展[J]. 食品与发酵工业, 2022:1-13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
赵祥杰, 杨文君, 杨荣玲, 等. 花色苷生物转化修饰的研究进展[J]. 生物技术通报, 2019, 35(10):205-211.
花色苷是植物界中广泛存在的一种天然的水溶性食用色素,是植物呈现靓丽颜色的重要物质基础,具有多种重要的生理功能和生物活性,药用和保健价值较高,具有巨大的商业应用潜力。花色苷由花色素和糖类物质经糖苷键缩合而成,其结构母核是2-苯基苯并吡喃阳离子,且结构上存在多个活性羟基,稳定性较差,对酸碱度、光照、温度等因素敏感,极易导致色泽或活性的消失。此外,其亲水性较强,在疏水环境中溶解性差,不易透过磷脂双分子层生物膜,导致生物利用度较低。在保持花色苷原有基本骨架结构基础上的酰基化修饰改造,可以获得理化特性改善、稳定性增强且具有良好生物利用度的花色苷酯衍生物,是解决花色苷应用难题的一条重要途径,也是当今研究的热点和难点。目前可用于花色苷类物质生物转化酰基化修饰的方法主要植物细胞转化、酶法转化和微生物全细胞转化。综述了花色苷的稳定性、生物活性及酰基化花色苷的生物合成方法,旨在为进一步开展花色苷的结构稳定性与生理活性研究及其在药品、食品、化妆品等行业中的广泛应用提供有益参考。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
马久强, 王晓泽, 秦帅, 等. 黑枸杞中花青素的提取技术概述[J]. 江西化工, 2023, 39(1):5-8,12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20):8163-8171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
While in vitro and animal evidence supports a role for anthocyanins in human health, future opportunities in berry health benefits will rest upon evidence from clinical intervention trials. Because little is known about the behaviour of anthocyanins during long term intake in humans, several clinical design factors were examined. Urine from volunteers (n = 17) who consumed blueberry juice daily was analysed using LC-MS/MS for predicted flavonoid-based products of anthocyanins in relation to a 5-day anthocyanin-free run-in, 28 days of blueberry juice intake, a 7-day washout and two dosing regimens. Total and parent anthocyanin content in urine varied 10-fold among the 17 participants. A high 24-0 h total anthocyanin excretion was associated with high anthocyanin retention (i.e. 0 h, before blueberry juice intake). Total anthocyanin excretion was not different before and after up to 7 days of washout indicative of a slow release of anthocyanins. Urinary excretion of anthocyanins declined during the 36-day study. The 24-0 h excretion was greater for total anthocyanins but not for parent anthocyanins when daily blueberry juice was taken all at once rather than as ⅓ doses taken thrice daily. However parent anthocyanins were retained better (higher 0 h) with 1× dosing. These findings could aid in the design of clinical research on anthocyanins and health.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
周迪, 王胤晨, 田兴舟, 等. 花青素增强反刍动物抗氧化性能作用机制的研究[J]. 畜牧兽医学报, 2019, 50(8):1536-1544.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
张超, 史红丽, 戴佳锟, 等. 鲜食黑糯玉米新品种陕K8143的选育[J]. 中国种业, 2023, 3:106-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin-rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin-rich corn silage (AR treatment) in a crossover design. The anthocyanin-rich corn silage-based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids-not-fat contents in the AR-treatment cows were lower than in the control cows. The feeding of the anthocyanin-rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin-rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin-rich corn with good nutritional value is needed for practical use as a ruminant feed.© 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
Anthocyanins are one of the most widespread families of natural pigments in the plant kingdom. Their health beneficial effects have been documented in many in vivo and in vitro studies. This review summarizes the most recent literature regarding the health benefits of anthocyanins and their molecular mechanisms. It appears that several signaling pathways, including mitogen-activated protein kinase, nuclear factor κB, AMP-activated protein kinase, and Wnt/β-catenin, as well as some crucial cellular processes, such as cell cycle, apoptosis, autophagy, and biochemical metabolism, are involved in these beneficial effects and may provide potential therapeutic targets and strategies for the improvement of a wide range of diseases in future. In addition, specific anthocyanin metabolites contributing to the observed in vivo biological activities, structure-activity relationships as well as additive and synergistic efficacy of anthocyanins are also discussed.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
This article summarizes current experimental knowledge on the efficacy, possible mechanisms and feasibility in the application of phytogenic products as feed additives for food-producing animals. Phytogenic compounds comprise a wide range of plant-derived natural bioactive compounds and essential oils are a major group. Numerous studies have demonstrated that phytogenic compounds have a variety of functions, including antimicrobial/antiviral, antioxidative and anti-inflammation effects and improvement in the palatability of feed and gut development/health. However, the mechanisms underlying their functions are still largely unclear. In the past, there has been a lack of consistency in the results from both laboratory and field studies, largely due to the varied composition of products, dosages, purities and growing conditions of animals used. The minimal inhibitory concentration (MIC) of phytogenic compounds required for controlling enteric pathogens may not guarantee the best feed intake, balanced immunity of animals and cost-effectiveness in animal production. The lipophilic nature of photogenic compounds also presents a challenge in effective delivery to the animal gut and this can partially be resolved by microencapsulation and combination with other compounds (synergistic effect). Interestingly, the effects of photogenic compounds on anti-inflammation, gut chemosensing and possible disruption of bacterial quorum sensing could explain a certain number of studies with different animal species for the better production performance of animals that have received phytogenic feed additives. It is obvious that phytogenic compounds have good potential as an alternative to antibiotics in feed for food animal production and the combination of different phytogenic compounds appears to be an approach to improve the efficacy and safety of phytogenic compounds in the application. It is our expectation that the recent development of high-throughput and "omics" technologies can significantly advance the studies on the mechanisms underlying phytogenic compounds' functions and, therefore, guide the effective use of the compounds.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[73] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |