天然抗氧化剂花青素在饲料添加剂中的应用

韩姗姗, 岳淑宁, 张红艳, 戴佳锟, 窦秉德, 李忠玲

农学学报. 2024, 14(5): 60-66

PDF(1274 KB)
PDF(1274 KB)
农学学报 ›› 2024, Vol. 14 ›› Issue (5) : 60-66. DOI: 10.11923/j.issn.2095-4050.cjas2023-0121
畜牧 兽医 水产

天然抗氧化剂花青素在饲料添加剂中的应用

作者信息 +

Application of Natural Antioxidant Anthocyanins in Feed Additives

Author information +
History +

摘要

花青素作为一种天然的生物活性物质,在畜禽养殖业中应用广泛。综述了目前花青素的研究进展,并从绿色养殖角度阐述了花青素在畜禽养殖方面的应用情况,以及其对提高养殖效益的重要作用。推广使用花青素等饲料添加剂将成为未来畜禽养殖行业中的一个重要趋势,有助于实现养殖业的可持续发展。

Abstract

Anthocyanin, as a natural bioactive substance, is widely used in the livestock and poultry breeding industry. This article reviews the current research progress on anthocyanins and discusses their application in livestock and poultry breeding from the perspective of green breeding and their important role in improving breeding benefits. The promotion of feed additives such as anthocyanins will become an important trend in the future livestock and poultry breeding industry, contributing to the industry's sustainable development.

关键词

花青素 / 饲料添加剂 / 可持续 / 畜禽养殖

Key words

anthocyanins / feed additives / sustainable / livestock and poultry breeding

引用本文

导出引用
韩姗姗 , 岳淑宁 , 张红艳 , 戴佳锟 , 窦秉德 , 李忠玲. 天然抗氧化剂花青素在饲料添加剂中的应用. 农学学报. 2024, 14(5): 60-66 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0121
HAN Shanshan , YUE Shuning , ZHANG Hongyan , DAI Jiakun , DOU Bingde , LI Zhongling. Application of Natural Antioxidant Anthocyanins in Feed Additives. Journal of Agriculture. 2024, 14(5): 60-66 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0121

0 引言

花青素(Anthocyanins)又称花色素,属黄酮类化合物,广泛存在于开花植物(被子植物)中,是植物中最重要的水溶性色素之一,具有独特的物理化学性质。花青素的功能特性取决于其稳定性、生物活性、结构完整性和生物利用度等方面。自1947年被首次发现以来,对花青素的研究不断深入。据报道,花青素是一种天然自由基清除剂,具有抗氧化、抗肿瘤、改善视力、抗炎、抗菌等多种生物活性,被广泛应用于保健品、药品和食品添加剂等领域[1]
花青素是由苯基和吡喃环结合而成的苷元,结构多样,在食品中常见的花青素苷元有6种,分别是天竺葵色素(Pelargonidin,Pg)、矢车菊色素(Cyanidin,Cy)、飞燕草色素(Delphindin,Dp)、芍药色素(Peonidin,Pn)、牵牛花色素(Petunidin,Pt)和锦葵色素(Malvidin,Mv)。其中,天竺葵色素和矢车菊色素是最常见的2种花青素苷元。各种花青素的主要区别在于其类黄酮骨架R1和R2位的羟基化和甲基化程度[2]。羟基化程较高时,花青素颜色会偏蓝;甲基化程度较高时,则花色素颜色会更偏红。

1 花青素的合成、调控与优化应用

关于花青素的合成途径已经基本明确,首先是苯丙氨酸到4-香草酰辅酶A,接着是3-丙二酰辅酶A和4-香草酰辅酶在细胞质中经过一系列酶的催化形成花色素前体,随后,在内质网膜经不同的糖基化、甲基化和酰基化等修饰,最终形成稳定的花青素苷,最后,花青素苷在转运蛋白或转运囊泡的协助下进入液泡内汇集[2]

1.1 花青素的生物合成调控

花青素的生物合成调控机制非常复杂,不仅受到基因和转录调节因子等因素的影响,还受到诸如光照、温度等外部环境因素的调节,一些植物激素如生长素、脱落酸、赤霉素和乙烯等也能影响花青素的合成积累[3]。参与花青素生物合成的基因和调控因子有很多,包括LrAN11基因、LrAN2基因、LrFT基因和MYB转录调节因子/基本螺旋-环-螺旋(bHLH)结构域蛋白/WD-重复(MYB-bHLH-WDR)等[4-5]。非编码RNA(micro RNA)也被证实参与了荔枝、杨树等植物花青素的表达调控[6-7]。为干预促进花青素的生物合成和积累,研究人员已经尝试了多种技术手段。例如,Ai等[8]采用组织培养技术提高了黑枸杞中LrFT基因过表达效率,并优化表达调控因子MYB-bHLH-WD40,实现了黑枸杞幼叶花青素生物合成和积累。此外,新基因编辑技术也被应用于花青素合成的精准调控中。Tu等[9]使用CRISPR/Cas9技术敲除了葡萄花青素生物合成的负调节因子VvbZIP36基因,使植物中花青素生物合成基因表达上调,成功促进了花青素的积累。光照是影响花青素合成的重要条件之一,Beuel等[10]使用悬浮培养葡萄细胞,验证了455 nm蓝光和365 nm紫外线可以提高总花青素含量,660 nm红光照射产生相反效果,但植物花青素的合成受UV-B的辐射诱导存在阈值,超过一定辐射剂量后,花青素的含量不再增加,反而可能降低[11]。在利用温度调节花青素积累方面,Yu等[12]利用低温处理方法通过降低苹果中与花青素合成相关基因的启动子区甲基化水平,增加花青素积累。

1.2 花青素的体外合成调控

天然植物中花青素含量很少,从中提取花青素成本较高,产率/量低,工艺复杂,受时间、地域、季节限制,并且存在稳定性和纯度等问题。为此,国内外众多学者致力于构建高效的微生物细胞工厂合成花色苷(花色素的糖基化形式)来实现花青素的工业生产[13-16]。在这方面,代表性的2项工作分别是Eichenberger等[17]用酿酒酵母工程菌首次从头合成了3种花青素糖苷;Jones等[18]将酵母中的花青素合成途径引入大肠杆菌,利用4种大肠杆菌共培养体系首次实现以葡萄糖、甘油和木糖为底物异源合成花青素,花青素的产量可达(9.5±0.6) mg/L。还有研究人员采用基因编辑技术通过改造相关代谢途径、优化培养条件等方法尝试生产花青素。例如,Xu等[19]在酿酒酵母中引入植物花青素转运蛋白和敲除酵母内源性花青素降解酶,成功实现了从葡萄糖获得高含量的花青素,产量达到了15.1 mg/L。这些研究为花青素的微生物合成提供了新思路和方法,但合成效率、产量、稳定性和纯度等问题还需要进一步研究。另一种体外植物细胞合成花青素的方法是利用细胞内部代谢途径,在无需微生物或植物参与的情况下,完成花青素的生产。与天然提取的花青素相比,此法合成的花青素具有更高的稳定性[20],为花青素的人工合成和安全应用提供了更加可靠的来源。综上所述,通过这些生物合成技术在受控条件下尝试生产花青素,生产过程可控,终产品纯度较高,受到广泛关注,为未来实现花青素的规模化生产提供了可能[21]

1.3 提高花青素稳定性的有效途径

在自然状态下,花青素苷元化学结构缺少一个电子,性质较活泼,因此,极易开环降解。除对pH敏感外,花青素苷元还容易受到光照、温度、氧气、金属离子等外界环境因素的影响[22]。在花青素提取和加工过程中,长时间光照会加速花青素的降解;当温度逐渐升高到60℃时,花青素逐渐降解为无色查耳酮,水溶液颜色逐渐消失,因此花青素通常需避光保存;花青素结构中有多个羟基,很容易被氧气氧化降解;一些金属离子如Fe2+、Fe3+、Pb2+、Sn2+等也可以损害花青素的稳定性。为了解决花青素在加工和消化过程中容易降解、损失严重的问题,提高花色苷的稳定性被视为是最为有效的途径之一。
为提高花青素的稳定性,研究人员提出利用生物法对花青素结构进行糖基化、酰基化、甲基化改性的方法,增强其抗降解能力[23-26],但这些传统改性方法面临效率低和特异性差等问题,因而难以推广应用。因此,在花青素的稳定性提升方面,还需要进一步深入研究,探索更加高效和可行的改性途径。
除了生物合成调控和结构改性之外,采用合适的提取方法和加工技术来增加花青素的稳定性也是关键。目前,主要的花青素提取方法是溶剂浸提法和辅助提取法[27]。溶剂浸提法存在萃取效率低、操作时间长、易受污染等缺点。为解决这些问题,澳大利亚学者通过对比12种不同溶剂后发现,在pH 3.0下使用甲醇/水(80/20 v/v)进行超声处理,能最大限度提高蓝莓花青素的提取效率[28]。但需注意花青素在甘油溶剂系统中的稳定性高于甲醇溶剂系统[29]。在溶剂浸提过程中,可以增大电压或采用双频超声(40+80) kHz处理,增加萃取传质效率,提高蓝莓花青素提取效率[30-31]。半连续液相脉冲放电方法是近年来出现的一种花青素提取方法,它通过电子束冲击和离子化过程实现花青素分子的解离和裂解,从而释放出更多的花青素[32]。与传统的热辅助萃取、间歇式脉冲放电系统相比,半连续液相脉冲放电方法的提取率更高,能耗更少。此外,在加工过程中,采取适当措施保护花青素稳定性也十分必要。Dong等[33]利用黄原胶形成的复杂网络结构,在热加工过程中(<149℃)对花青素进行保护,从而提高了花青素的热稳定性和抗氧化能力。同样地,储存温度对花青素也会造成影响。Wang等[34]采用冷冻干燥法和低温下加入葡萄糖保存花青素,结果表明,真空冷冻干燥保存的花青素含量比热风干燥方法高出5.8倍,花青素的颜色和生物活性也得到较好的保留。长期储存期间,花青素的稳定性在很大程度上依赖于储存温度,其中以花青-3-O-葡萄糖苷(C3G)和吲哚丁-3-O-葡萄糖苷(D3G)对温度最为敏感。低温下花青素的衰减速率低,5℃下储存的花青素稳定性比在室温(25℃和35℃)储存时提高了近2倍[35]。还有一种冷等离子体预处理方法能有效提高花青素的提取率(13.35%~20.47%),促进花青素单体生成,增强了花青素提取物的抗氧化活性,但该法所需设备成本较高,存在操作难度[36]
单个技术在提高花青素的稳定性方面存在一些局限性,一些研究人员尝试使用多种技术相结合的方式,来实现花青素的颜色强化和高稳定性[37]。未来的研究还需要进一步探索和开发更加经济有效的方法来改善花青素稳定性和生物活性,以满足不同领域的需求。

1.4 花青素抗氧化机制及高效利用策略

花青素的分子结构与其抗氧化活性密切相关。Dudek等[38]研究发现具有最多羟基的B环花青苷表现出更强的抗氧化能力。这种高抗氧化能力源于花青素分子结构中羟基取代基所提供的氢原子,它们能与自由基反应,从而减少自由基对细胞、组织、蛋白质、细胞膜和线粒体的氧化损害,并提高细胞活性[39]。花青素还可以通过激活细胞内抗氧化酶系统,增强细胞抵御自由基的能力[40]。此外,花青素还可以通过调节AMPK信号通路,降低细胞中参与糖异生和脂肪合成酶的表达水平,同时增强参与糖原分解和脂肪分解酶的表达水平,有效抑制高血糖高血脂[41];通过下调神经肽(NPY)及γ-氨基丁酸受体、PKA-α、磷酸化CREB的表达,抑制食物摄取,抑制致病菌、促进有益菌繁殖,缓解氧化应激压力;通过下调炎症因子(TNF-α、IL-6、IL-1β和IFN-γ)表达,缓解炎症[42];通过增加肠道屏障功能相关蛋白ZO-1、occludin、claudin-1的表达,改善肠道屏障,增加短链脂肪酸的产生[43]
花青素具有良好的生物活性,但容易被降解,摄入的花青素食品特性、参与花青素代谢和运输的酶、代谢花青素的肠道菌群和摄入时间及剂量等因素都会影响其生物利用度[44-45]。事实上,花青素的体内生物利用度极低[46],在消化过程中往往在消化道中就被降解。为了提高花青素的生物利用度,许多研究者采取了不同的方法来解决其降解问题。Li等[47]研究了一种改性玉米淀粉制备多孔微凝胶的方法,通过使用四甲基哌啶氧化物氧化和糖化酶水解淀粉,并使用磷酸三钠作为交联剂制备的多孔微胶囊有效地提高了花青素的运载能力,实现了花青素的长时间持续释放。Jiang等[48]利用1% wt壳聚糖和4% wt胶原蛋白+0.5% wt果胶构建微胶囊,在pH 6时获得最佳稳定性,包埋效率为92.58%,运载能力达12.34 g/100 g。此外,最新研究表明,采用脂质体、多糖微球、蛋白质-多糖复合物等载体都可以实现花青素的特异性递送和控制释放[49],从而有效提高花青素在宿主体内的功效和分布,而且这些复合制剂具有更好的自由基清除能力[50]。体外益生菌发酵也被用于提高花青素生物利用度,同时提高其抗氧化水平[51]。虽然适当摄入花青素可能有积极的健康益处,但我们仍需要更多的科学研究来系统评价花青素对健康的确切影响。

2 花青素在饲料中的应用进展

在动物饲养过程中,受环境污染、低质量饲料等因素的影响,动物体内的自由基逐渐增加,引发各种疾病和健康问题。花青素作为一种天然抗氧化剂,具有重要的应用潜力。一旦摄入后,在动物体内先被分解成花青素单体和低聚体原花青素等形式,再经过一系列催化代谢过程产生酚酸、苯乙酸、脱甲氧基花青素等代谢产物。这些代谢产物能够有效减轻动物体内的氧化应激反应,降低自由基水平,从而保护动物机体健康[52-53]。随着畜牧业的快速发展,花青素在畜禽饲料中的应用逐渐受到广泛关注。
自2020年7月1日起,中国全面禁止在饲料中添加抗生素,这引发了对于抗生素替代方案的迫切需求。花青素凭借其卓越的抗氧化性能,再度成为替抗研究关注的焦点,并被应用于饲料添加剂领域[54]。研究发现,花青素在不同饲养阶段能够调节宿主肠道微生物群落多样性,促进有益菌属如乳杆菌、肠球菌、弯曲杆菌和链球菌等的富集[55],同时抑制有害菌如沙门氏菌[56]、大肠杆菌、金黄色葡萄球菌等的过度生长,从而提高肠道免疫力,进而维护肠道健康[57]。此外,花青素还可以提高动物的血清免疫力[58],进一步证明了其在饲料添加剂中的潜在价值。
黑甘蔗是一种含有丰富花青素的饲料原料,研究表明喂养山羊黑甘蔗青贮饲料90 d后,能够提高山羊肌肉脂肪含量且肉质更嫩[59]。进一步用七水合硫酸亚铁预处理黑甘蔗后,可以提高其应用效果,喂养后山羊嫩肉产量更高,且不会影响山羊生产性能[60]。以糖蜜(4%)和硫酸亚铁(0.030%)共同处理42 d的黑甘蔗,还可以有效抑制瘤胃液中的产甲烷菌,提高总挥发性脂肪酸浓度,促进纤维素分解菌增值,有利于山羊对青贮饲料的消化和吸收[61]
除了黑甘蔗,玉米中同样富含花青素,特别是在黑玉米中,其花青素含量较高。研究发现,在某些新品种的黑玉米籽粒中,花青素含量高达0.15%~0.24%,而穗轴中的花青素含量更为引人注目,达到了1.36%[62]。将黑玉米副产物,如穗轴、秸秆或玉米芯,作为饲料原料使用,不仅能提高饲料中的花青素含量,还能够获得更佳的青贮发酵质量和更强的抗氧化活性,这对于畜禽健康和生产效益都有益处[63]
在当前饲料原料短缺和饲料禁抗的背景下,黑玉米作为一种有利于畜禽健康的优质饲料原料,具有较好的应用前景,值得大力推广。通过将富含花青素的黑玉米提取物添加到蛋鸡日粮中,可以增强血浆抗氧化能力,有利于产蛋,提高产蛋后期蛋中氨基酸和不饱和脂肪酸含量以及增加蛋壳厚度[64]。在富含花青素的黑玉米对育肥羔羊日粮的影响研究中,摄入高比例花青素可以在对羔羊生产性状无影响的同时,提高羔羊血液血红蛋白含量、增加天冬氨酸氨基转移酶和肌酸激酶活性、降低葡萄糖和非酯化脂肪酸浓度,这表明花青素添加到畜禽日粮中可以有效提高畜禽的免疫力和健康水平[65]。将黑玉米青贮饲料喂养奶牛后发现,泌乳奶牛血浆中天冬氨酸转氨酶(AST)活性降低,超氧化物歧化酶(SOD)活性增加,这表明黑玉米饲料中的花青素具有抗氧化作用,能够有效降低氧化应激反应[66]。同时,花青素可防止脂质氧化,改善牛奶质量[67]。在肉牛饲料中添加黑玉米青贮饲料,有望改善肉质品质和口感,提高肉牛体内的花青素含量,同时能够降低肉牛的胆固醇含量[68]。屠宰后,牛肉颜色更好,肉中n-3多不饱和脂肪酸浓度增加[69]。此外,在日粮中添加花青素成分可以控制牛的氮排泄和尿液成分,显著减少牛排泄物中的一氧化二氮排放[70],对于环保和养殖业可持续发展具有重要意义。
花青素不仅可以独立应用,还可与其他饲料添加剂(如益生菌、酸化剂、氧化还原剂等)相结合,以更好地发挥其功能,提高动物的生长性能和健康水平[71]。益生菌对肠道微生态系统具有调节作用,而花青素可以通过调控肠道微生物群落结构,促进有益菌的增殖。花青素与益生菌的联合使用,可以提高饲料抗氧化和益生功能,达到更好的养殖效果。酸化剂主要降低肠道pH,抑制有害菌的生长。花青素与酸化剂的联合应用,可以进一步提升肠道微生态环境的稳定性,减少有害菌的繁殖。氧化还原剂可以调节细胞内氧化还原平衡,维持细胞的正常功能。花青素则可以通过抗氧化作用,减轻细胞内的氧化应激反应。花青素与氧化还原剂的联合使用,可以更好地保护肠道细胞免受氧化损伤。当前,将这些不同功能或作用方式的添加剂混合使用被认为是最有潜力的替代动物饲料中抗生素的解决方案,主要因为:(1)单个添加剂可能无法涵盖所有抗生素的有益效果;(2)一些添加剂具有协同作用,混合使用可以降低所需剂量,使用成本降低;(3)抗生素替代品必须是一种综合方法,包括饲料、管理和生物安全,而不仅是单纯的添加某一种饲料添加剂[72]
然而,现阶段对不同营养素添加剂间的相互作用及配比对动物生长发育和健康状况的影响,以及花青素在不同动物生长发育和健康状态中的作用研究还相对有限。不同添加剂之间可能存在相互作用或干扰的现象,因此需要在实际应用中进行合理的配比,并关注花青素长期使用的安全性问题[73]。此外,需要注意的是,不同实验条件、畜禽品种、花青素来源等多种因素可能会有一定的实验结果差异,因此,有必要进一步研究花青素在动物饲料中的作用机制和应用效果。

3 结语和展望

随着畜禽无抗养殖进程的不断推进,应用一些绿色、新型和功能性的饲料添加剂来维持养殖动物机体健康已成为畜禽养殖业中最有效的替代抗生素方式之一。在这些添加剂中,花青素以其作为一种天然的生物活性物质备受关注,具有出色的抗氧化、抗菌、抗炎和免疫调节等多种重要生理功能。通过在饲料中添加花青素,不仅可以提高畜禽免疫力,还能降低疾病的发生率。同时,花青素还能促进畜禽肠道微生态平衡,改善肠道健康状况,从而提高畜禽的生产性能和经济效益。因此,花青素是一种非常有应用前景和潜力的饲料添加剂,在有效促进畜禽绿色健康养殖和保障畜禽肉蛋产品质量方面具有重要作用,也符合当下“大食物观”所倡导的可持续发展和环保理念。未来的研究将持续深入探索,进一步完善和确定花青素与其他饲料添加剂的混合应用方案,以满足消费者对安全、健康、环保食品的需求,同时也将推动养殖业的可持续发展,为人类提供更加优质的食品选择。

参考文献

[1]
WANG B, TANG X, MAO B, et al. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites[J]. Crit Rev Food Sci Nutr, 2022, 21:1-17.
[2]
祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016, 51 (1):107-119.
花青素是种子植物呈色的重要色素, 由一系列结构基因编码的酶(CHS、CHI、F3H、F3'H、F3'5'H、DFR、ANS和3GT)催化而成, 随后经过各种修饰被转运至液泡等部位储存。各类器官中差异表达的MYB、bHLH和WDR三种调控因子通过形成MBW复合体直接正调控以上结构基因的表达。这个过程涉及的基因变异常会导致植物的各种颜色变异。在生活中人们广泛利用这些变异品种, 取其丰富色味。造成颜色变异的具体分子机制在很多情况下还不清楚, 但日益积累的个例研究为其中的规律性提供了基础数据。该文概述了花青素的合成、转运过程及其转录调控机制, 探讨了研究颜色变异品种的常用思路及方法。在总结近年工作的基础上, 对生活中常见蔬菜、水果和花卉的颜色变异品种的分子机制进行了综述。
[3]
李鲁华, 王忠妮, 任明见, 等. 谷类作物中植物激素调控花青素合成的研究进展[J]. 山地农业生物学报, 2022, 41(4):62-66.
[4]
严莉, 陈建伟, 王翠平, 等. 黑果枸杞WD40编码基因LrAN11的克隆及表达分析[J]. 核农学报, 2017, 31(11):2103-2112.
WD40蛋白广泛存在于真核生物中,是一类高度保守的蛋白家族,具有广泛的生物化学和细胞生物学功能。为探索黑果枸杞LrAN11的功能,采用同源克隆的方法克隆了黑果枸杞WD40蛋白基因,将其命名为LrAN11,GenBank登录号:KY131959。生物信息学分析结果表明,该基因的编码区长1 029 bp,编码 342 个氨基酸,蛋白分子量为38.3 kD,理论等电点为4.95,含有5个WD40基序,属于WD40类蛋白基因家族;经预测LrAN11定位于细胞质中,该基因编码的氨基酸序列具有较高的保守性,与马铃薯、番茄、甜椒和美花烟草具有较近的亲缘关系;定量RT-PCR检测表明,LrAN11基因在黑果枸杞各组织中均有表达,其中在青果中的相对表达量最高,在根和紫果中次之,而在黑果中表达最低,表明LrAN11可能参与黑果枸杞花青素的生物合成的调控;在韩国枸杞和0901枸杞品种中表达显著,在其他14个枸杞品种中表达均较低且无显著差异性(P>0.05),说明LrAN11的表达具有品种特异性。此外,随着NaCl处理时间的延长,该基因的表达量先降低后升高,且在2、12和24 h的表达量与对照相比存在显著差异性(P<0.05),说明LrAN11可能参与黑果枸杞对盐胁迫的响应。本研究结果为进一步阐明黑果枸杞LrAN11基因的功能及其在黑果枸杞遗传改良中的应用奠定了基础。
[5]
ZHAO M, LI J, ZHU L, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes, 2019, 10(7):496-507.
[6]
LIU R, LAI B, HU B, et al. Identification of MicroRNAsand their target genes related to the accumulation of anthocyanins in Litchichinensis by high-throughput sequencing and degradome analysis[J]. Front. Plant Sci., 2017, 7:2059-2071.
[7]
WANG Y M, LIU WW, WANG X W, et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar[J]. Hortic Res., 2020, 7:118-130.
[8]
AI P Y, XUE D L, WANG Y, et al. An efficient improved CRISPR mediated gene function analysis system established in Lycium ruthenicum Murr[J]. Ind. Crops Prod., 2023, 192:116142-116150.
[9]
TU M X, FANG J H, ZHAO R K, et al. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine(Vitisvinifera)[J]. Hortic Res, 2022, 9:22-36.
[10]
BEUEL A K, JABLONKA N, HEESEL J, et al. LEDitSHAKE: A lighting system to optimize the secondary metabolite content of plant cell suspension cultures[J]. Sci Rep, 2021, 11:23353-23368.
[11]
盛建军, 李想, 何永美, 等. UV-B辐射对花青素合成代谢的影响及分子机理[J]. 植物生理学报, 2019, 55(7):949-958.
[12]
YU L J, SUN Y Y, ZHANG X, et al. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes[J]. Hortic Res, 2022, 9:7-19.
[13]
YANG S N, MI L, WU J H, et al. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis[J]. Crit. Rev. Food Sci. Nutr., 2022, 29:1-16.
[14]
李跃, 李国瑞, 陈永胜. 微生物代谢工程在花色苷生产过程中的应用现状和前景[J]. 食品科学, 2020, 41(13):260-266.
随着微生物代谢工程技术在合成生物学等领域的广泛应用,该技术已被用于提取多种植物天然产物。花色苷是一种水溶性天然色素,能使花和果实着色,已被广泛应用于食品和化妆品行业。目前,花色苷主要从植物材料中提取,但是提取的花色苷具有纯度低和性质不稳定等缺点,因此利用微生物代谢工程技术替代传统方法提取花色苷具有重要意义。本文阐述了工程菌合成花色苷的研究进展,对酶的选择、运输调节、尿嘧啶核苷-5’-二磷酸葡萄糖供应量的调控以及工艺优化等方面进行综述。对花色苷合成代谢途径的了解将为实现微生物生产花色苷的产业化提供重要信息。
[15]
李慧敏, 贾斌, 李霞, 等. 合成芳香族化合物的酵母底盘改造策略[J]. 中国生物工程杂志, 2022, 42(10):80-92.
[16]
李玲玲, 刘雪, 邱泽天, 等. 植物多酚的微生物合成[J]. 生物工程学报, 2021, 37(6):2050-2076.
[17]
EICHENBERGER M, HANSSON A, FISCHER D, et al. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2018, 18(4):46-91.
[18]
JONES JA, VERNACCHIOV R, COLLINS SM, et al. Complete biosynthesis of anthocyanins using E. coli polycultures[J]. mBio, 2017, 8(3):621-630.
[19]
XU S, LI G J, ZHOU J W, et al. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes[J]. Front. Bioeng. Biotechnol, 2022, 10:899182-899195.
[20]
BIANCONI M, CERIOTTI L, CUZZOCREA S, et al. Red carrot cells cultured in vitro are effective, stable, and safe ingredients for skin care, nutraceutical, and food applications[J]. Front. Bioeng. Biotechnol., 2020, 8:575079-575093.
[21]
BELWAL T, SINGH G, JEANDET P, et al. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances[J]. Biotechnol. Adv., 2020, 43:107600-107620.
[22]
唐罗, 陈晓霞, 陈军, 等. 桑椹花青素加工稳定性及其应用研究进展[J]. 食品与发酵工业, 2022:1-13.
[23]
ZHENG J, DING C X, WANG L S, et al. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau[J]. Food Chem., 2011, 126(3):859-865.
[24]
HE J R, YE S X, CORREIA P, et al. Dietary polyglycosylatedanthocyanins, the smart option? A comprehensive review on their health benefits and technological applications[J]. Compr. Rev. Food Sci. Food Saf., 2022, 21:3096-3128.
[25]
JOKIOJA J, YANG B R, LINDERBORG M K. Acylatedanthocyanins:A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation[J]. Compr. Rev. Food Sci. Food Saf., 2021, 20:5570-5615.
[26]
赵祥杰, 杨文君, 杨荣玲, 等. 花色苷生物转化修饰的研究进展[J]. 生物技术通报, 2019, 35(10):205-211.
花色苷是植物界中广泛存在的一种天然的水溶性食用色素,是植物呈现靓丽颜色的重要物质基础,具有多种重要的生理功能和生物活性,药用和保健价值较高,具有巨大的商业应用潜力。花色苷由花色素和糖类物质经糖苷键缩合而成,其结构母核是2-苯基苯并吡喃阳离子,且结构上存在多个活性羟基,稳定性较差,对酸碱度、光照、温度等因素敏感,极易导致色泽或活性的消失。此外,其亲水性较强,在疏水环境中溶解性差,不易透过磷脂双分子层生物膜,导致生物利用度较低。在保持花色苷原有基本骨架结构基础上的酰基化修饰改造,可以获得理化特性改善、稳定性增强且具有良好生物利用度的花色苷酯衍生物,是解决花色苷应用难题的一条重要途径,也是当今研究的热点和难点。目前可用于花色苷类物质生物转化酰基化修饰的方法主要植物细胞转化、酶法转化和微生物全细胞转化。综述了花色苷的稳定性、生物活性及酰基化花色苷的生物合成方法,旨在为进一步开展花色苷的结构稳定性与生理活性研究及其在药品、食品、化妆品等行业中的广泛应用提供有益参考。
[27]
马久强, 王晓泽, 秦帅, 等. 黑枸杞中花青素的提取技术概述[J]. 江西化工, 2023, 39(1):5-8,12.
[28]
SINGH M C, PROBST Y, PRICE E W, et al. Relative comparisons of extraction methods and solvent composition for Australian blueberry anthocyanins[J]. J. Food Compos. Anal., 2022, 105:104232-104240.
[29]
FU X Z, DU Y L, ZOU L G, et al. Acidified glycerol as a one-step efficient green extraction and preservation strategy for anthocyanin from blueberry pomace:New insights into extraction and stability protection mechanism with molecular dynamic simulation[J]. Food Chem., 2022, 390:133226-133237.
[30]
DÍAZ-ÁLVAREZ R, CARULLO D, PATARO G, et al. Testing of a new high voltage electrical discharge generator prototype at high frequencies to assist anthocyanin extraction from blueberries[J]. Food Biosci., 2022, 50(Part A):102127-102138.
[31]
HU A J, HAO ST, ZHENG J, et al. Multi-frequency ultrasonic extraction of anthocyanins from blueberry pomace and evaluation of its antioxidant activity[J]. J. AOAC Int., 2021, 104:811-817.
[32]
ZHOU X, WU YT, WANG Y, et al. An efficient approach for the extraction of anthocyanins from Lyciumruthenicum using semi-continuous liquid phase pulsed electrical discharge system[J]. Innov.Food Sci. Emerg. Technol., 2022, 80:103099-103109.
[33]
DONG R H, TIAN J L, HUANG Z Y, et al. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermo stability and antioxidant abilities[J]. Food Chem., 2023, 410:135375-135388.
[34]
WANG Y P, FU J X, YANG D. In situ stability of anthocyanins in Lycium ruthenicum Murray[J]. Molecules, 2021, 26(23):7073-7079.
[35]
MUCHEB M, SPEERS R A, RUPASINGHEHP V. Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of "Merlot" and "Ruby" grapes(Vitisvinifera)[J]. Front. Nutr., 2018, 5:100-109.
[36]
LI J F, LI Z P, MA S S, et al. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment[J]. Innov.Food Sci. Emerg. Technol., 2023, 84:103294-103304.
[37]
TAN C, DADMOHAMMADI Y, LEE M C, et al. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins[J]. Compr Rev Food Sci Food Saf., 2021, 20(4):3164-3191.
[38]
DUDEK A, SPIEGEL M, STRUGAŁA-DANAK P, et al. Analytical and theoretical studies of antioxidant properties of chosen anthocyanins; a structure-dependent relationships[J]. Int. J. Mol. Sci., 2022, 23(10):5432-5450.
[39]
MA Y, FENG Y H, DIAOT W, et al. Experimental and theoretical study on antioxidant activity of the four anthocyanins[J]. J. Mol. Struct., 2020, 1204:127509-127536.
[40]
李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20):8163-8171.
[41]
HERRERA-BALANDRANO D D, CHAI Z, HUTABARAT R P, et al. Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPKactivation: In vitro and in vivo studies[J]. Redox Biol., 2021, 46:102100-102113.
[42]
XIE L H, SU H M, SUN C D, et al. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms[J]. Trends Food Sci. Technol., 2018, 72:13-24.
[43]
PENG Y J, YAN Y M, WAN P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radic. Biol. Med., 2019, 136:96-108.
[44]
EKERM E, AABY K, BUDICLETO I, et al. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability[J]. Foods, 2020, 9(1):2-20.
[45]
KALT W, MCDONALD J, VINQVIST-TYMCHUK M, et al. Human anthocyanin bioavailability: Effect of intake duration and dosing[J]. Food Funct., 2017, 8:4563-4569.
While in vitro and animal evidence supports a role for anthocyanins in human health, future opportunities in berry health benefits will rest upon evidence from clinical intervention trials. Because little is known about the behaviour of anthocyanins during long term intake in humans, several clinical design factors were examined. Urine from volunteers (n = 17) who consumed blueberry juice daily was analysed using LC-MS/MS for predicted flavonoid-based products of anthocyanins in relation to a 5-day anthocyanin-free run-in, 28 days of blueberry juice intake, a 7-day washout and two dosing regimens. Total and parent anthocyanin content in urine varied 10-fold among the 17 participants. A high 24-0 h total anthocyanin excretion was associated with high anthocyanin retention (i.e. 0 h, before blueberry juice intake). Total anthocyanin excretion was not different before and after up to 7 days of washout indicative of a slow release of anthocyanins. Urinary excretion of anthocyanins declined during the 36-day study. The 24-0 h excretion was greater for total anthocyanins but not for parent anthocyanins when daily blueberry juice was taken all at once rather than as ⅓ doses taken thrice daily. However parent anthocyanins were retained better (higher 0 h) with 1× dosing. These findings could aid in the design of clinical research on anthocyanins and health.
[46]
DI LORENZO C, COLOMBO F, BIELLA S, et al. Polyphenols and human health: The role of bioavailability[J]. Nutrients, 2021, 13(1):273-303.
[47]
LI Y. Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins[J]. J. Food Eng., 2021, 302:110552-110561.
[48]
JIANG Z Y, ZHAO S J, FAN Z Y, et al. A novel all-natural (collagen + pectin)/chitosan aqueous two-phase microcapsule with improved anthocyanin loading capacity[J]. Food Hydrocolloids, 2023, 134:107984-107994.
[49]
HERRERA-BALANDRANOD D, CHAI Z, BETA T, et al. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability[J]. Trends Food Sci. Technol., 2021, 118(Part B), 808-821.
[50]
XIEC J, HUANG M G, YING R F, et al. Olive pectin-chitosan nanocomplexes for improving stability and bioavailability of blueberry anthocyanins[J]. Food Chem., 2023, 417:135798-135823.
[51]
ZHAO J C, YU J, ZHI Q, et al. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditi selegans[J]. Food Funct., 2021, 12:12647-12658.
[52]
BARIEXCA T, EZDEBSKI J, REDAN BW, et al. Pure polyphenols and cranberry juice high in anthocyanins increase antioxidant capacity in animal organs[J]. Foods, 2019, 8(8):340-350.
[53]
周迪, 王胤晨, 田兴舟, 等. 花青素增强反刍动物抗氧化性能作用机制的研究[J]. 畜牧兽医学报, 2019, 50(8):1536-1544.
[54]
CHANGXING L, CHENLING M, ALAGAWANY M, et al. Health benefits and potential applications of anthocyanins in poultry feed industry[J]. World's Poult. Sci. J., 2018, 74(2):251-264.
[55]
EMESE T, PETER F, GABOR F, et al. Nutraceuticals induced changes in the broiler gastrointestinal tract microbiota[J]. mSystems, 2021, mSystems, 6(2):1-25.
[56]
MA Y, DING S J, FEI Y Q, et al. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella[J]. Food Control, 2019, 106:106712-106720.
[57]
KHAN M S, IKRAM M, PARK J S, et al. Gut microbiota, its role in induction of Alzheimer's disease pathology, and possible therapeutic interventions: Special focus on anthocyanins[J]. Cells, 2020, 9(4):853-874.
[58]
LINH N V, NGUYEN D V, KHONGDEE N, et al. Influence of black rice (Oryzasativa L.) bran derived anthocyanin-extract on growth rate, immunological response, and immune-antioxidant gene expression in Nile tilapia (Oreochromis niloticus) cultivated in a biofloc system[J]. Fish Shellfish Immunol., 2022, 128:604-611.
[59]
MINH T N S, SIWAPORN P, THOMAS J S, et al. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage[J]. Front. Vet. Sci., 2022, 9:880838-880848.
[60]
PATINDRA A R P, MINH T N S, SIWAPORN P, et al. Dietary inclusion of anthocyanin-rich black cane silage treated with ferrous sulfate heptahydrate reduces oxidative stress and promotes tender meat production in goats[J]. Front. Vet. Sci., 2022, 9:969321-969333.
[61]
SUONGN T M, PAENGKOUM S, PURBAR A P, et al. Optimizing anthocyanin-rich black cane (Saccharumsinensisrobx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative[J]. Fermentation, 2022, 8(6):248-269.
[62]
张超, 史红丽, 戴佳锟, 等. 鲜食黑糯玉米新品种陕K8143的选育[J]. 中国种业, 2023, 3:106-108.
[63]
TIAN XZ, PAENGKOUM P, PAENGKOUM S, et al. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover[J]. J IntegrAgr, 2018, 17(9):2082-2095.
[64]
LI J X, ZHOU D, LI H, et al. Effect of purple corn extract on performance, antioxidant activity, egg quality, egg amino acid, and fatty acid profiles of laying hen[J]. Front. Vet. Sci., 2023, 9:1083842-1083853.
[65]
ANTUNOVIĆ Z, NOVOSELEC J, KLIRŠALAVARDIĆ Ž, et al. Influence of red corn rich in anthocyanins on productive traits, blood metabolic profile, and antioxidative status of fattening lambs[J]. Animals, 2022, 12(5):612-624.
[66]
HOSODA K, ERUDEN B, MATSUYAMA H, et al. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows[J]. Anim. Sci. J., 2012, 83(6):453-459.
Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin-rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin-rich corn silage (AR treatment) in a crossover design. The anthocyanin-rich corn silage-based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids-not-fat contents in the AR-treatment cows were lower than in the control cows. The feeding of the anthocyanin-rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin-rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin-rich corn with good nutritional value is needed for practical use as a ruminant feed.© 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
[67]
TIAN X, LU Q. Anthocyanins in dairy cow nutrition: A review[J]. Agriculture, 2022, 12(11):1806-1819.
[68]
WEI L, GOMAA W, AMETAJ B, et al. Feeding red osier dogwood (Cornussericea) to beef heifers fed a high-grain diet affected feed intake and total tract digestibility[J]. Anim. Feed Sci. Technol, 2019, 247:83-91.
[69]
PROMMACHART R, CHERDTHONG A, NAVANUKRAW C, et al. Effect of dietary anthocyanin-extracted residue on meat oxidation and fatty acid profile of male dairy cattle[J]. Animals, 2021, 11(2):322-340.
[70]
GAO J, ZHAO G Y. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms, and perspectives[J]. Anim. Nutr., 2022, 9:327-334.
[71]
LI D T, WANG P P, LUO Y H, et al. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade[J]. Crit. Rev. Food Sci. Nutr., 2017, 57:1729-1741.
Anthocyanins are one of the most widespread families of natural pigments in the plant kingdom. Their health beneficial effects have been documented in many in vivo and in vitro studies. This review summarizes the most recent literature regarding the health benefits of anthocyanins and their molecular mechanisms. It appears that several signaling pathways, including mitogen-activated protein kinase, nuclear factor κB, AMP-activated protein kinase, and Wnt/β-catenin, as well as some crucial cellular processes, such as cell cycle, apoptosis, autophagy, and biochemical metabolism, are involved in these beneficial effects and may provide potential therapeutic targets and strategies for the improvement of a wide range of diseases in future. In addition, specific anthocyanin metabolites contributing to the observed in vivo biological activities, structure-activity relationships as well as additive and synergistic efficacy of anthocyanins are also discussed.
[72]
YANG C, CHOWDHURY MAK, HOU Y, et al. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application[J]. Pathogens. 2015, 4:137-156.
This article summarizes current experimental knowledge on the efficacy, possible mechanisms and feasibility in the application of phytogenic products as feed additives for food-producing animals. Phytogenic compounds comprise a wide range of plant-derived natural bioactive compounds and essential oils are a major group. Numerous studies have demonstrated that phytogenic compounds have a variety of functions, including antimicrobial/antiviral, antioxidative and anti-inflammation effects and improvement in the palatability of feed and gut development/health. However, the mechanisms underlying their functions are still largely unclear. In the past, there has been a lack of consistency in the results from both laboratory and field studies, largely due to the varied composition of products, dosages, purities and growing conditions of animals used. The minimal inhibitory concentration (MIC) of phytogenic compounds required for controlling enteric pathogens may not guarantee the best feed intake, balanced immunity of animals and cost-effectiveness in animal production. The lipophilic nature of photogenic compounds also presents a challenge in effective delivery to the animal gut and this can partially be resolved by microencapsulation and combination with other compounds (synergistic effect). Interestingly, the effects of photogenic compounds on anti-inflammation, gut chemosensing and possible disruption of bacterial quorum sensing could explain a certain number of studies with different animal species for the better production performance of animals that have received phytogenic feed additives. It is obvious that phytogenic compounds have good potential as an alternative to antibiotics in feed for food animal production and the combination of different phytogenic compounds appears to be an approach to improve the efficacy and safety of phytogenic compounds in the application. It is our expectation that the recent development of high-throughput and "omics" technologies can significantly advance the studies on the mechanisms underlying phytogenic compounds' functions and, therefore, guide the effective use of the compounds.
[73]
ABDELLI N, SOLÀ-ORIOL D, PÉREZ J F. Phytogenic feed additives in poultry: Achievements, prospective and challenges[J]. Animals(Basel), 2021, 11(12):3471-3497.

基金

西安市科技局农业技术研发项目“富含玉米花青素替抗饲料的研究与开发”(22NYYF015)
陕西省科学院项目科学研究专项“仔猪无抗饲料产品开发中发酵中药的应用研究”(2021k-11)
陕西省科技厅项目重点研发计划“家禽专用无抗生物饲料添加剂的研究及应用”(2022NY-103)
西安市科技局农业技术研发项目“奶牛粪污无害化处理高效复合生物制剂的研究与应用”(21NYYF0017)
陕西省科学院基础研究面上项目“黑玉米种质资源开发与综合利用技术示范”(2023k-13)
PDF(1274 KB)

174

Accesses

0

Citation

Detail

段落导航
相关文章

/