
2022年夏季陕西关中持续高温干旱天气成因及对农作物的影响
Analysis of Persistent High Temperature and Drought in Summer of 2022 and Its Impacts on Crops in Guanzhong of Shaanxi Province
2022年夏季陕西关中出现持续高温干旱天气,对玉米、苹果和猕猴桃等农作物生长发育造成严重影响。为研究此次高温干旱发生机制,利用关中地区46个自动气象站观测数据、欧洲中心ERA-5逐小时和月平均再分析资料等,研究主要高温时段大气环流特征和成因。结果表明:(1)主要高温时段为6月中下旬和8月上中旬,关中大部分地区出现中到重旱;(2)2个高温阶段均表现出下沉气流强盛的特征,但成因不同。6月高空异常的脊前负涡度平流输送在关中地区造成强烈的下沉运动,8月副高和南亚高压叠置,气候态正异常在陕西上空表现为异常强的下沉运动;(3)6月强盛的西北气流和8月副高异常偏西偏强使低层偏南气流减弱,阻断了水汽来源,均表现出水汽通量散度正异常,不利于出现有效降水;(4)高温干旱对粮食和经济作物产量和品质有一定影响,建议高温前采取有效措施,及时灌溉,降低田间温度,补充植株水分,增强植株蒸腾作用,降低农作物高温胁迫程度。
Persistent high temperature and drought occurred in Guanzhong of Shaanxi Province in summer of 2022, causing serious impacts on the growth and development of crops such as maize, apple and kiwifruit. To study the mechanisms of the occurrence of heat and drought, observations from 46 automatic meteorological stations in Guanzhong area, and ERA-5 hourly and monthly mean reanalysis data were used to study the characteristics and causes of atmospheric circulation during the main high temperature periods. The results showed that (1) the main high temperature periods were mid-late June and early-mid August, with moderate to severe drought in most parts of Guanzhong. (2) Both high-temperature periods were characterised by strong sinking currents, but the causes were different. In June, strong sinking movements were maintained by anomalous pre-ridge negative vorticity advective, while in August, the superposition of the subtropical high and South Asian high caused the positive climate state anomalies and strong sinking movements over Shaanxi. (3) The strong northwesterly airflow in June and the abnormally westerly and strong subtropical high in August weakened the southerly airflow and blocked the source of water vapour, both showing positive anomalies of water vapour flux dispersion, which were not conducive to the occurrence of precipitation. (4) High temperatures and drought had an impact on the yield and quality of food and cash crops. It was recommended that effective measures should be taken before high temperatures to lower field temperatures, replenish plant water, enhance plant transpiration and reduce the degree of crop heat stress.
高温 / 干旱 / 农作物 / 关中地区 {{custom_keyword}} /
high temperature / drought / crops / Guanzhong {{custom_keyword}} /
表1 猕猴桃成熟熵回归分析 |
可溶性固形物含量 检测日期 | 末花期 | 可溶性固形物含量G 检测值/% | 末花期次日至 检测前一日ΣT | 末花期次日至 检测前一日ΣS | 成熟熵(H) | 回归计算 | |
---|---|---|---|---|---|---|---|
金玉 2017年 | 8月30日 | 4月17日 | 5.49 | 3456.1 | 834.4 | 1568.5 | b1=0.0060 b0=-3.9875 r=0.8718 R=0.7593 T检验: T=7.4747 t查表值(α=0.001):3.9920 |
9月6日 | 5.78 | 3620.7 | 835.7 | 1615.5 | |||
9月13日 | 6.14 | 3795.5 | 875.7 | 1693.2 | |||
9月20日 | 6.91 | 3965.8 | 928.5 | 1778.9 | |||
9月27日 | 6.46 | 4135.4 | 943.7 | 1837.4 | |||
10月4日 | 6.94 | 4291.3 | 953.3 | 1887.9 | |||
10月11日 | 7.6 | 4435.6 | 974.9 | 1943.9 | |||
10月18日 | 8.74 | 4546.3 | 974.9 | 1974.9 | |||
金玉 2018年 | 8月16日 | 4月14日 | 5.42 | 3231.5 | 759.8 | 1451.9 | |
9月4日 | 6.4 | 3767.6 | 896.3 | 1700.3 | |||
9月11日 | 5.77 | 3947.2 | 941.6 | 1783.2 | |||
9月24日 | 6.9 | 4285.3 | 1011.0 | 1927.8 | |||
9月27日 | 7.22 | 4374.4 | 1027.4 | 1964.6 | |||
10月1日 | 7.08 | 4441.3 | 1044.0 | 1995.2 | |||
10月8日 | 9.57 | 4587.6 | 1131.1 | 2098.9 | |||
2019年 金桃 | 9月3日 | 4月23日 | 5.4 | 3481.9 | 842.7 | 1581.7 | |
9月10日 | 5.4 | 3673.8 | 911.1 | 1684.7 | |||
9月17日 | 6.3 | 3876.5 | 967.4 | 1781.9 | |||
9月24日 | 7.1 | 4040.9 | 1022.0 | 1867.3 | |||
9月30日 | 8.3 | 4193.7 | 1068.6 | 1943.6 |
表2 猕猴桃可溶性固形物含量计算及检验 |
检测日期 | 可溶性固形物含量 检测值(G)/% | 成熟熵(H) | 可溶性固形物 含量计算值Gi/% | 残差(δ) | 方差(δ*) | |
---|---|---|---|---|---|---|
2017年 金玉 | 8月30日 | 5.49 | 1568.5 | 5.42 | -0.07 | 0.00 |
9月6日 | 5.78 | 1615.5 | 5.71 | -0.07 | 0.01 | |
9月13日 | 6.14 | 1693.2 | 6.17 | 0.03 | 0.00 | |
9月20日 | 6.91 | 1778.9 | 6.69 | -0.22 | 0.05 | |
9月27日 | 6.46 | 1837.4 | 7.04 | 0.58 | 0.33 | |
10月4日 | 6.94 | 1887.9 | 7.34 | 0.40 | 0.16 | |
10月11日 | 7.6 | 1943.9 | 7.68 | 0.08 | 0.01 | |
10月18日 | 8.74 | 1974.9 | 7.86 | -0.88 | 0.77 | |
2018年 金玉 | 8月16日 | 5.42 | 1451.9 | 4.72 | -0.70 | 0.48 |
9月4日 | 6.4 | 1700.3 | 6.21 | -0.19 | 0.03 | |
9月11日 | 5.77 | 1783.2 | 6.71 | 0.94 | 0.89 | |
9月24日 | 6.9 | 1927.8 | 7.50 | 0.60 | 0.36 | |
9月27日 | 7.22 | 1964.6 | 7.73 | 0.51 | 0.26 | |
10月1日 | 7.08 | 1995.2 | 7.98 | 0.90 | 0.82 | |
10月8日 | 9.57 | 2098.9 | 8.61 | -0.96 | 0.93 | |
2019年 金桃 | 9月3日 | 5.4 | 1581.7 | 5.50 | 0.10 | 0.01 |
9月10日 | 5.4 | 1684.7 | 6.12 | 0.72 | 0.52 | |
9月17日 | 6.3 | 1781.9 | 6.70 | 0.40 | 0.16 | |
9月24日 | 7.1 | 1867.3 | 7.22 | 0.12 | 0.01 | |
9月30日 | 8.3 | 1943.6 | 7.67 | -0.63 | 0.39 | |
平均 | 0.083 | 0.31 |
表3 猕猴桃成熟期预报计算及检验 |
检测日期 | 末花期次日至 统计日(ΣT) | 末花期次日至 统计日(ΣS) | 成熟熵 (H) | 可溶性固形物含量G 计算值 | 检测 成熟期 | 预报成熟期 (G≥8.0日期) | 误差/d | |
---|---|---|---|---|---|---|---|---|
2017年 ‘金玉’ | 10月9日 | 4413.6 | 974.9 | 1937.74 | 7.83 | |||
10月10日 | 4435.6 | 974.9 | 1943.9 | 7.87 | ||||
10月11日 | 4451.7 | 974.9 | 1948.40 | 7.90 | ||||
10月12日 | 4466.6 | 974.9 | 1952.6 | 7.92 | ||||
10月13日 | 4482.5 | 974.9 | 1957.0 | 7.95 | ||||
10月14日 | 4499.1 | 974.9 | 1961.7 | 7.98 | 10月14日 | |||
10月5日 | 4515.8 | 974.9 | 1966.35 | 8.01 | 10月15日 | 1 | ||
2018年 ‘金玉’ | 9月23日 | 4285.3 | 1011.0 | 1927.8 | 7.77 | |||
9月24日 | 4309.7 | 1019.4 | 1940.7 | 7.85 | ||||
9月25日 | 4333.3 | 1027.4 | 1953.1 | 7.93 | ||||
9月26日 | 4374.4 | 1027.4 | 1964.6 | 7.96 | ||||
9月27日 | 4374.4 | 1027.4 | 1964.6 | 8.00 | 9月27日 | -1 | ||
9月28日 | 4397.2 | 1028.9 | 1972.0 | 8.04 | 9月28日 | |||
2019年 ‘金桃’ | 9月25日 | 4096.1 | 1031.7 | 1889.7 | 7.54 | |||
9月26日 | 4119.9 | 1036.2 | 1899.6 | 7.60 | ||||
9月27日 | 4143.5 | 1047.1 | 1914.1 | 7.69 | ||||
9月28日 | 4168.0 | 1057.9 | 1928.7 | 7.78 | ||||
9月29日 | 4193.7 | 1068.6 | 1943.6 | 7.87 | 9月29日 | |||
9月30日 | 4220.4 | 1079.3 | 1958.8 | 7.96 | ||||
10月1日 | 4246.3 | 1090.0 | 1973.76 | 8.05 | 10月1日 | 2 |
[1] |
An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone () and major reductions in recruitment of scallops (), king () and tiger () prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future studies.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
IPCC. Climate change 2021: the physical science basis[R]. Cambridge: Cambridge University Press, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Compound extremely hot and dry summers become more frequent with higher CO2concentrations due to stronger interdependence.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
New framework reveals global warming’s impact on risk that multiple regions experience hot and dry conditions simultaneously.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
杨阳, 赵娜, 岳天祥. 1980—2018年中国极端高温事件时空格局演变特征[J]. 地理科学, 2022, 42(3):536-547.
基于全国2 419个气象站1980—2018年逐日气象观测资料,利用Mann-Kendall突变检验、滑动t检验、空间自相关及标准差椭圆等方法,选取4个典型的极端高温指数,分析了中国极端高温事件时空格局演变特征。结果表明:① 中国近40 a来夏天日数、热夜日数、暖夜日数和暖昼日数均呈显著的上升趋势,4个指数均在20世纪80、90年代偏少,2000年以后逐渐增加,4个极端高温指数均在2000年左右发生显著变化。② 4种极端高温指数的空间自相关主要是以高?高和低?低2种空间聚集形态为主,夏天日数和热夜日数的聚集性较强,近40 a来暖夜日数和暖昼日数的空间聚集性先增强后减弱,且空间聚集性分布格局由高?高包围低?低转变为低?低包围高?高。③ 4个指数变化率最大的站点均位于南方地区,其中夏天日数变化率最大的站点呈东西向分布格局,其余3个指数变化率最大的站点呈南北向分布格局,西南、西北地区交界地带夏天日数和暖昼日数在近40 a来变化率均显著高于全国其他地区,华东沿海地区暖夜日数的变化趋势方向性分布最明显,且变化趋势高于全国其他地区。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
吴锦成, 朱烨, 刘懿, 等. 中国热浪时空变化特征分析[J]. 水文, 2022, 42(3):72-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
韩雪云, 赵丽, 张倩, 等. 西北干旱区极端高温时空变化特征分析[J]. 沙漠与绿洲气象, 2019, 13(4):17-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
许婷婷, 杨霞, 周鸿奎. 1981-2019年新疆区域性高温天气过程时空特征及其环流分型[J]. 干旱气象, 2022, 40(2):212-221.
利用1981—2019年5—9月新疆105个国家基本气象站日最高气温观测资料及美国国家环境预报中心和大气研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料,分析新疆区域性高温天气过程的时空变化特征及环流形势。结果表明:(1)1981—2019年新疆共出现100次区域性高温天气过程,主要发生在6—8月,其中7月最多、8月次之、6月最少;区域性高温天气过程主要出现在伊犁河谷平原地区、北疆准噶尔盆地南缘、南疆塔里木盆地及东疆平原地区。(2)进入21世纪后,新疆高温天气过程发生次数呈增加趋势,强度明显增强;过程开始时间有提前趋势,结束时间有推后趋势;过程累计日数则呈现“增加、减少、增加”的阶段性变化趋势。(3)造成新疆区域性高温天气过程的500 hPa环流形势主要分为4类,分别为伊朗副高东伸型(占54.0%)、叠加型(占32.0%)、新疆脊型(占12.0%)、西太副高西伸型(占2.0%)。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
马双梅, 祝从文, 刘伯奇. 2019年4-6月云南持续性高温天气的大气环流异常成因[J]. 大气科学, 2021, 45(1):165-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
彭京备, 刘舸, 孙淑清. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析[J]. 大气科学, 2016, 40(5):897-906.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王颖, 刘丹妮, 张玮玮. 1951—2015年杭州市炎热高温天气特征及影响因子[J]. 干旱气象, 2017, 35(4):611-618+625.
利用杭州市1951—2015年逐日气象要素资料和1993—2014年太阳总辐射观测资料,通过高温、暖夜和炎热指数对杭州近65 a炎热天气变化特征进行分析,并尝试以08:00太阳辐射、气温和相对湿度为预报因子建立高温日逻辑回归(Logit)模型。结果表明:(1)杭州市65 a来高温日数、暖夜日数和炎热日数均呈缓慢上升趋势,2000年前后上升速率明显加快,其中高温日集中出现在每年7、8月,频率达86.8%;炎热临界值所对应温度随相对湿度的增大逐渐下降,温度差达3.7 ℃;(2)高温日数年际变化序列与08:00气温、相对湿度和太阳总辐射相关性较好,当08:00气温大于等于28.0 ℃、相对湿度小于等于70.0%、总辐射大于等于0.8 MJ·m-2时,较易出现高温天气;(3)Logit模型预报历史回报准确率达到87.0%,具有一定的应用价值。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
吴遥, 唐红玉, 蒋兴文, 等. 重庆市一次特强区域性高温天气过程诊断[J]. 干旱气象, 2019, 37(5):817-826.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
黄照亮, 王世强, 谢霞, 等. 珠海市高温天气变化趋势及其与台风的关系[J]. 广东气象, 2021, 43(1):6-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
余谙迪, 李玄, 肖微. 2019年6月四川攀枝花一次持续高温天气的诊断分析[J]. 高原山地气象研究, 2022, 42(S1):88-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
林汇丰, 张玫, 张秋明, 等. 广东省2018年5月极端高温天气的特征及成因分析[J]. 广东气象, 2020, 42(2):12-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4):385-395.
用1979—2011年逐日长江下游气温资料研究长江下游夏季高温日数与温度低频振荡的联系和变化特征。结果表明,长江下游夏季逐日气温主要有1525, 3060 和6070 d 的周期振荡,其中长江下游气温的3060 d 振荡强度年际变化和78月高温日数之间有显著的正相关。采用1979—2000年逐日长江下游气温3060 d低频分量和东亚850 hPa 低频温度主成分,构建了长江下游温度低频分量的延伸期预测的扩展复数自回归模型(ECAR)。对2001—2011年58月长江下游温度低频分量进行独立的实时延伸期逐日预报试验结果表明, 这种数据驱动的预测模型对3060 d时间尺度的长江下游低频温度分量的预测时效可达23 d左右, 对于提前2025 d预报长江下游地区夏季持续高温过程很有帮助,预报能力明显优于自回归模型(AR)。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
刘嘉慧敏, 郑然, 娄盼星, 等. 2017年7月陕西高温热浪天气成因及前期信号初探[J]. 干旱气象, 2019, 37(2):233-242.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
Increased climatic variability and more frequent episodes of extreme conditions may result in crops being exposed to more than one extreme temperature event in a single growing season and could decrease crop yields to the same extent as changes in mean temperature. The developmental stage of the crop exposed to increased temperatures will determine the severity of possible damage experienced by the plant. It is not known whether or not the damaging effects of heat episodes occurring at different phenological stages are additive. In the present study, the interaction of high‐temperature events applied at the stages of double ridges and anthesis in Triticum aestivum (L.) cv. Chablis was investigated. Biomass accumulation of control plants and that of plants experiencing high temperatures during the double‐ridge stage were similar and were reduced by 40 % when plants were subjected to a heat event at anthesis. Grain number on the main and side tillers declined by 41 %, and individual grain weight declined by 45 % with heat stress applied at the double‐ridge stage and anthesis or at anthesis alone. The harvest index was reduced from 0.53 to 0.33. Nitrogen contents in leaves were reduced by 10 % at the double‐ridge stage and by 25 % at anthesis. The maximum rates of CO2 assimilation increased with heat stress at the double‐ridge stage and higher rates were maintained throughout the growing season. The results clearly indicate that an extreme heat event at the double‐ridge stage does not affect subsequent growth or the response of wheat to heat stress at anthesis.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
\n The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO\n 2\n ) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution.\n
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
周梦子, 王会军, 霍治国. 极端高温天气对玉米产量的影响及其与大气环流和海温的关系[J]. 气候与环境研究, 2017, 22(2):134-148.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
安盼盼, 明博, 董朋飞, 等. 黄淮南部玉米产量对气候生态条件的响应[J]. 作物学报, 2018, 44(3):442-453.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王文彬, 杨力, 李长亚, 等. 高温热害对夏玉米生产的影响[J]. 大麦与谷类科学, 2014(2):8-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
陈岩, 岳丽杰, 杨勤, 等. 高温热害对玉米生长发育的影响及研究进展[J]. 耕作与栽培, 2019(1):26-31+39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
In a 2-yr study, plants of an adapted, short-season single cross maize (Zea mays L.) hybrid were grown outdoors until 18 days post-silking. At that stage, the plants were transferred to controlled-environment growth cabinets where temperature effects on leaf senescence, grain and whole plant dry matter (DM) production and DM distribution were studied. The day/night temperature regimes were 25/15 °C, 25/25 °C, 35/15 °C and 35/25 °C. Higher temperatures reduced whole plant DM accumulation during grain filling. The reduction in DM accumulation was primarily related to a reduction in the period of time from 18 days post-silking until 100% leaf senescence and, to a limited extent, to a lower rate of whole plant DM production. Grain yield per plant was also lower under higher temperatures. The decreases in grain yield were almost entirely determined by a shorter duration of grain filling, while no temperature effect was observed on kernel growth rates or on kernel number per ear. During rapid grain filling, the increase in kernel DM results from utilization of a combination of assimilates temporarily stored in the vegetative plant parts and assimilates produced through current photosynthesis. Under the highest temperature regime, assimilates remobilized from other plant parts accounted for a greater proportion of kernel weight gain. In addition, there was an indication that higher night temperatures resulted in an increased proportion of gain in kernel weight resulting from remobilization of stored DM.Key words: Corn, temperature, grain-filling period, grain growth, yield components, leaf senescence
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
张明, 李艳莉, 贺文丽, 等. 秦岭北麓猕猴桃夏季高温热害分析及防御对策[J]. 陕西气象, 2011(3):35-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
魏丽欣, 张良玉, 赵春雷, 等. 河北省苹果膨大期高温热害和气候适宜性分析[J]. 气象与环境科学, 2019, 42(4):10-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
李艳莉, 刘映宁, 李美荣, 等. 陕西果树高温热害气象特征分析[J]. 陕西农业科学, 2007(3):65-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |