高粱炭疽病研究进展

韦丽纯, 李赟, 陈合云, 郑学强, 刘合芹, 刘秀慧, 邹桂花

农学学报. 2022, 12(9): 25-30

PDF(1073 KB)
PDF(1073 KB)
农学学报 ›› 2022, Vol. 12 ›› Issue (9) : 25-30. DOI: 10.11923/j.issn.2095-4050.cjas2022-0059
植物保护

高粱炭疽病研究进展

作者信息 +

A Review of Studies on Sorghum Anthracnose

Author information +
History +

摘要

高粱作为中国主要的酿造原料之一,在国民经济发展中占据重要地位。高粱炭疽病是高粱的主要病害之一,在整个生育期中均可发病,且在温暖湿润的热带和亚热带栽种地区更易发生和流行,不仅影响植株的正常生长,严重时会引起产量的大幅下降和籽粒品质的劣变。多年来,高粱病理学家和育种家对高粱炭疽病病原菌菌株分离、病害发生流行规律、发生原因、寄主抗性利用和抗炭疽病基因定位等方面进行了广泛的研究,取得了一些进展。这些研究为炭疽病的生化防控以及培育抗炭疽病品种奠定了基础。开展高粱炭疽病研究,发掘更丰富多样的优异抗性种质资源,减少农药使用,不仅可以满足中国高粱产业对天然有机高粱原料的巨大需求,还可以推动高粱生产向高产优质转变。对高粱炭疽病的分布和发病症状、炭疽病病原菌侵染机理、病害发生流行规律及流行原因、抗性资源鉴定和高粱抗炭疽病基因定位的相关研究进展进行了综合分析和论述,以期从分子水平上更好地认识高粱与炭疽病病原菌之间的相互作用,为高粱炭疽病研究提供参考。

Abstract

Sorghum, as one of the main brewing materials in China, plays an important role in the development of national economy. Sorghum anthracnose is one of the main diseases of sorghum throughout its whole life cycle. It is more likely to occur and spread in warm and humid tropical and subtropical cultivated areas, and seriously affects the yield of sorghum and reduces grain quality. For several decades, sorghum pathologists and breeders have made extensive research on the occurrence and prevalence of the disease, including the isolation of sorghum anthrax pathogenic bacteria, the utilization of host resistance and the gene location of resistance to anthracnose in sorghum, some research progresses have been obtained, which laid a foundation for biochemical prevention of anthracnose and breeding varieties resistant to anthracnose. Carrying out research on sorghum anthracnose, exploring more abundant and excellent resistant germplasm resources and reducing the use of pesticides can not only meet the huge demand of China’s natural organic sorghum industry, but also promote the high-yield and high-quality production of sorghum. This review summarizes the distribution and symptoms of sorghum anthracnose, infection mechanism of pathogen, epidemic rules and causes of anthracnose, identification of resistance resources and gene location of sorghum anthracnose, which will enable a better understanding of the interaction between sorghum and Colletotrichum sublineola at the molecular level and provide reference for sorghum anthracnose research.

关键词

高粱 / 炭疽病 / 病原菌 / 病害 / 抗性资源 / 基因定位

Key words

sorghum / anthracnose / pathogenic bacteria / disease / resistant resources / gene location

引用本文

导出引用
韦丽纯 , 李赟 , 陈合云 , 郑学强 , 刘合芹 , 刘秀慧 , 邹桂花. 高粱炭疽病研究进展. 农学学报. 2022, 12(9): 25-30 https://doi.org/10.11923/j.issn.2095-4050.cjas2022-0059
WEI Lichun , LI Yun , CHEN Heyun , ZHENG Xueqiang , LIU Heqin , LIU Xiuhui , ZOU Guihua. A Review of Studies on Sorghum Anthracnose. Journal of Agriculture. 2022, 12(9): 25-30 https://doi.org/10.11923/j.issn.2095-4050.cjas2022-0059

0 引言

工业的发展带来了经济的进步,但是与此同时,也对环境造成了严重的污染,破坏了周围的生态,影响了居民健康生活。工业污染与其他污染方式最大的不同在于工业生产可能会造成土壤重金属污染。重金属污染的特点在于重金属元素易被吸附、解吸、吸收、转化,因此很难在环境中降解,一旦进入人体,会在某些器官中富集,造成器官衰竭[1]。镉污染是重金属污染中常见的一种,这种重金属元素一旦进入到土壤中,会停留在土壤表面,同时一部分镉元素也会进入到植物当中,影响土壤地表植被生长[2]。在此背景下,如何移除净化土壤重金属镉成为土壤污染治理的一项重点项目。
目前,关于土壤重金属镉污染的治理在很多文献中都提出了解决方法。例如,尹静玄等[3]在其研究中提到了一种耐镉细菌联合电动技术,利用该技术进行镉污染土壤的修复工作。在该研究当中,首先在镉污染土壤中接种3种耐镉细菌,然后通过自制实验装置以10 V/cm电压梯度通电10 h,最后通过检测得出土壤中镉元素去除率,以此实现镉污染土壤修复。曾星等[4]提出了一种植物修复技术,在该研究中分析了龙葵对镉的富集特性并对其生理响应进行了分析。罗宁临等[5]基于聚糖(改性)-沸石研究了一种钝化剂,并以Cd污染的红壤水稻土为对象,进行钝化实验,得出Cd含量数据,分析钝化剂的去除镉元素的效果。
基于前人研究经验,本研究选取MSC-IDA(磁性固体螯合剂),开展移除净化试验,以验证MSC-IDA的应用效果。以期为土壤重金属污染的治理提供参考和建议。

1 试验材料与设备

1.1 试验材料

MSC-IDA(磁性固体螯合剂)的移除净化技术研究所需要的试验材料如表1所示。
表1 试验材料
名称 规格 生产企业
四氧化三铁 分析纯 天津博迪化工股份有限公司
四乙氧基硅烷 分析纯 天津市福晨化学试剂厂
γ-氨丙基三乙氧基硅烷 分析纯 湖北武大有机硅新材料股份有限公司
氯乙酸钠 分析纯 天津市光复精细化工研究所

1.2 试验设备与仪器

试验中所使用的相关设备和仪器如表2所示。
表2 试验设备与仪器
名称 型号 生产企业
电热鼓风干燥箱 101型 北京市永光明医疗机械厂
电子天平 BS 224 S 北京赛多利斯仪器系统有限公司
台式高速离心机 TG16 长沙英泰仪器有限公司
超声波清洗器 KQ-500E 江苏省昆山市超声仪器有限公司
原子吸收光谱仪 ZEEnit700P 德国耶拿分析仪器股份有限公司
台式恒温振荡器 THZ-C 太仓市华美生化仪器厂
磁力搅拌器 FlatSpin 大龙兴创实验仪器有限公司
振动磨研样机 RK/XZN-100 武汉洛克粉磨设备制造有限公司

1.3 试验样品的采集与处理

为保证MSC-IDA(磁性固体螯合剂)对土壤重金属镉污染移除净化通用性,从3个重金属镉污染地区采集实验样品,并进行处理,以符合后续试验需要[6]。具体过程如下。
步骤1:选取试验样品采集地点,即某地区某冶炼厂附近废弃地、某工业城市河流岸边以及某市蔬菜基地表层土壤(0~20 cm)。
步骤2:从这3个地点按照梅花点采样法采集0~20 cm之间的表层土壤,如图1所示[7]
图1 梅花点采样法

Full size|PPT slide

步骤3:将采集法5个采样点样本混合在一起,并剔除其中的植物残渣及大石块。
步骤4:将试验样品依次放入到电热鼓风干燥箱当中进行干燥脱水处理。
步骤5:对干燥处理后的土壤样本利用振动磨研样机进行粉碎处理。
步骤6:使用50、100、200目尼龙筛对研磨后的土壤进行反复过筛。
步骤7:利用电子天平称取100 g样本,利用原子吸收光谱仪测试重金属镉污染样本净化前含有重金属镉元素的含量[8]
步骤8:利用电子天平称取100 g样本作为净化后重金属镉元素含量测试样本,并放入塑封袋中密封保存。
步骤9:将塑封袋放入4℃冰箱内冷藏,等待备用。
试验样品经过处理后共得到三大类样本,即从某地区某冶炼厂附近采集的土壤为样本1、某工业城市河流岸边采集的土壤为样本2,某市蔬菜基地表层土壤采集的土壤为样本3。这三类样本经过处理后才能满足后续净化操作的规范和需要,否则会影响测试的准确度。

1.4 MSC-IDA(磁性固体螯合剂)制备

在完成试验样品的采集与处理后,制备MSC-IDA(磁性固体螯合剂),具体过程如图2所示,将制备好的MSC-IDA放入冰箱,冷藏,备用[9]
图2 MSC-IDA(磁性固体螯合剂)制备流程

Full size|PPT slide

1.5 移除净化技术

以1.2和1.3取得的试验样品和MSC-IDA为基础,进行移除净化试验[10]。具体过程如下。
步骤1:利用电子天平称取20 g重金属镉污染的土壤样本,并放入离心管当中。
步骤2:在烧杯当中加入不同浓度的MSC-IDA。
步骤3:利用磁力搅拌器将MSC-IDA与土壤样本充分混合[11]
步骤4:将土壤样本放入台式恒温振荡器中以 220 r/min的速度进行振荡。
步骤5:振荡后,取出样本,等待下一步的重金属镉元素含量检测。
由于需要测试4种不同条件下土壤重金属镉污染移除净化效果,因此本研究的移除净化技术具体可以划分为4种方案,每种方案的条件都不同,如表3所示[12]
表3 土壤重金属镉污染移除净化方案参数设置
条件 方案1 方案2 方案3 方案4
样本/个 3 3 3 3
温度 室温 室温 室温 室温
螯合剂浓度/(mol/L) 0.05 0.01、0.05、0.10、0.20 0.05 0.05
净化时间/min 60 60 0~120 60
粒径/目 50 50 50 50、100、200

1.6 重金属镉元素含量检测

以上4组移除净化方案处理结束后,再进行土壤样本净化后重金属镉元素含量检测。具体过程如下。
步骤1:从振荡器中取出净化后的土壤样本,并将其置于离心管当中。
步骤2:将离心管放入台式高速离心机中,并在4000 rpm/min速度下离心10 min,得到上清液[13]
步骤3:将上清液放入原子吸收光谱仪的样品室当中,进行重金属镉元素含量检测,具体过程如图3所示[14]
图3 重金属镉元素含量检测流程

Full size|PPT slide

步骤4:利用公式(1)~(2)计算土壤样本中重金属镉元素去除率。
Y=F×Gζ×10-3
(1)
式中, Y代表土壤样本中重金属镉元素含量; F代表上清液当中重金属镉元素浓度; G代表磁性固体螯合剂浓度; ζ代表土壤样本质量[15]
Z=Y1-Y2×Vζ×100%
(2)
式中, Y1 Y2代表土壤重金属镉污染移除净化前后的镉含量; V代表磁性固体螯合剂体积; Z代表去除率, ζ代表土壤样本质量[16]
基于计算得出的去除率,对MSC-IDA的净化效果进行分析。

2 结果与分析

2.1 方案1条件下MSC-IDA的应用效果分析

方案1为温度、螯合剂浓度、净化时间以及粒径等条件相同的条件下,MSC-IDA对不同样本的去除净化效果。由图4a可见,净化前,3种土壤样本中包含的重金属镉含量均超出《土壤环境质量标准 农用地土壤污染风险管控标准》(试行)(GB15618—2018)给农用地污染风险筛选值,按照污染严重程度排序为:样本1>样本2>样本3;在净化条件相同的情况下,向50目3种土壤样本中加入0.05 mol/L MSC-IDA,净化60 min,发现3个土壤样本中重金属镉含量均明显减少。由图4b可见,去除率由高到低排序为:样本1>样本2>样本3。说明MSC-IDA对重金属镉污染越重的土壤,去除效果越好。
图4 方案1下MSC-IDA的应用效果分析

Full size|PPT slide

2.2 方案2下MSC-IDA的应用效果分析

方案2在温度、螯合剂浓度、净化时间以及粒径等条件相同的条件下,测试的是0.01、0.05、0.1、0.20 mol/L 4种不同MSC-IDA浓度下,MSC-IDA对土壤重金属镉污染移除净化效果。结果如图5所示。从图5中可以看出,随着MSC-IDA的浓度的增大,重金属镉元素去除率在不断上升,但是当超过0.1 mol/L之后,重金属镉元素去除率上升幅度逐渐趋于平缓,0.20 mol/L浓度MSC-IDA与0.1 mol/L浓度的MSC-IDA区别并不大,这与范力仁等[17]研究MSC-IDA材料用量对吸附量及溶液中镉离子去除率的趋势一致。随着MSC-IDA的浓度的增大,样本1的重金属镉元素去除率上升幅度最大,其次是样本2,最后是样本3。说明MSC-IDA浓度小于0.1 mol/L时,重金属镉去除率与MSC-IDA浓度的变化呈正比,而当MSC-IDA浓度达到0.1 mol/L时,MSC-IDA对重金属的去除率达到最高,MSC-IDA浓度超过0.1 mol/L时,对重金属的去除率趋于平缓。由此可见,配制0.1 mol/L浓度的MSC-IDA对重金属镉的去除效果最理想,也最经济。
图5 方案2下MSC-IDA的应用效果分析

Full size|PPT slide

2.3 方案3下MSC-IDA的应用效果分析

方案3中,自变量条件为0~120 min不同净化时间,因变量为MSC-IDA对土壤重金属镉污染移除净化效果,即重金属镉元素去除率。结果如图6所示。从图6中可以看出,时间与重金属镉元素去除率成正比,但是到达90 min后,重金属镉元素去除率达到最高,之后开始下降。其中样本1重金属镉元素去除率用时最长,是因为其重金属镉元素含量最高。由此说明,MSC-IDA的净化需要根据当地重金属镉污染程度来适当调整,污染程度越大,净化时间就应该越长。
图6 方案3下MSC-IDA的去除率对比图

Full size|PPT slide

2.4 方案4下MSC-IDA的应用效果分析

方案4中主要研究土壤不同粒径(50、100、200目)对MSC-IDA的净化效果的影响。结果如图7所示。从图7中可以看出,随着土壤粒径的增大,MSC-IDA的去除率越高,说明土壤粒径越大,MSC-IDA越能达到净化目的,因为土壤粒径越大,越能说明土壤结构之间的间隙越大,而间隙越大MSC-IDA越能侵入,去除其中的重金属镉元素;3种不同样本中,MSC-IDA对样本2的净化效果最好,因为样本2土壤取自河流岸边,在河流的冲刷下,细小粒子被带走,土壤结构松散,粒子之间间隙最大。
图7 方案4下MSC-IDA的去除率对比图

Full size|PPT slide

3 结论与讨论

本研究通过设计4种不同的净化方案,研究MSC-IDA对3种土壤样本中的重金属镉污染的移除净化效果。结果表明:在添加MSC-IDA后,3种土壤样本中镉含量均明显减少;MSC-IDA添加量小于0.1 mol/L时,土壤中镉的去除率随MSC-IDA浓度的增加而增加,当MSC-IDA含量超过0.1 mol/L之后,上升幅度逐渐趋于平缓。震荡时间与镉的去除率成正比, 60 min后,镉去除率增长趋于平缓,最后开始下降。土壤粒径越大,MSC-IDA的净化效果越好。范力仁等[17]也做过MSC-IDA对土壤镉污染的移除净化研究,但其倾向于螯合转化机理研究,单因素实验研究样本均为配制的镉溶液,与土壤实体样本存在差异性;本研究通过选择不同的土壤样本进行净化研究,更接近实景,为MSC-IDA的应用提供了具体参考和建议。

参考文献

[1]
卢庆善. 高粱学[M]. 北京: 中国农业出版社, 1999.
[2]
卢庆善, 孙毅, 华泽田. 农作物杂种优势[M]. 北京: 中国农业科技出版社, 2002.
[3]
丁国祥. 高粱炭疽病的发生与防治[J]. 四川农业科技, 2014(2):44-45.
[4]
MILLIANO W D, FREDERIKSEN R A, BENGSTON G D. Sorghum and millets diseases: a second world review[J]. International crops research institute for the semi-arid tropics, 1992.
[5]
COTA L V, SOUZA A G C D, COSTA R V, et al. Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil[J]. Journal of phytopathology, 2017:1-7.
[6]
LI Y, TEBEEST D. Temporal and spatial development of sorghum anthracnose in Arkansas[J]. Plant disease, 2009, 93(3):287-292.
Development of sorghum anthracnose in time and space on susceptible ('BTx623' and 'Pioneer 8313') and resistant ('Cargill 888Y') sorghum (Sorghum bicolor) cultivars was investigated in field plots inoculated with a mixture of three strains (T430-SW, Ar54-SW, and ArSS-1SW) of Colletotrichum sublineolum in 2001 and 2002. After slow development during early growth stages, sorghum anthracnose developed rapidly after flowering. The logistic model provided a good statistical fit for disease progress curves for sorghum anthracnose in Arkansas. Compared to susceptible cultivars, the resistant cultivar had significantly lower values for the standard area under the disease progress curve, a lower upper asymptote, and delayed epidemic onset. However, there were no significant differences in infection rate and the time of the inflection points, the times at which the disease proportion equaled values of one-half of upper asymptotes, among the three cultivars. The negative exponential model more closely described disease gradients of sorghum anthracnose than the inverse power law model. There were significant differences in intercepts but not in slopes and half-distance between the resistant and susceptible cultivars. The slopes of disease gradients were significantly lower at 78 days after inoculation (DAI) than at 57 DAI on the three cultivars. The results could provide epidemiological components of sorghum anthracnose to help evaluate sorghum cultivars and breeding lines under field conditions.
[7]
邓小锋, 彭秋, 李青风, 等. 高粱炭疽病抗性机理研究进展[J]. 贵州农业科学, 2019, 47(11):68-74.
[8]
BALDRICH P, CHAYA T, CAPLAN J L, et al. Genome assembly and transcriptome of Colletotrichum sublineola CsGL1, a new resource to study anthracnose disease in sorghum[J]. Molecular plant microbe interactions, 2021; 34(10):1209-1211.
[9]
李志. 浅谈高粱种植主要病害的防治[J]. 农业与技术, 2018, 38(10):34.
[10]
王秋月, 李清虎, 尹学伟, 等. 不同高粱品种对炭疽病的抗性及其与产量的相关性研究[J]. 农业科技通讯, 2020(4):37-41.
[11]
ACHARYA B, THOMAS N, EVERMAN W, et al. Effectiveness of fungicides and their application timing for the management of sorghum foliar anthracnose in the Mid-Atlantic United States[J]. Plant disease, 2019, 103(11).
[12]
ARAGAW G, CHALA A, TEREFE H. Spatial distribution and association of factors influencing sorghum anthracnose epidemics in Eastern Ethiopia[J]. International journal of pest management, 2021, 67(1).
[13]
孔凡信, 徐婧, 刘志. 辽西高粱炭疽病的发生与防控[J]. 辽宁农业科学, 2020(3):48-49.
[14]
杨蕾, 姜钰, 徐秀德. 高粱炭疽病发生与有效控制研究进展[J]. 辽宁农业科学, 2005(5):40-41.
[15]
XU X D, LIU Z H. A color atlas of sorghum diseases and pests[M]. China agricultural science and technology press, 2012:951-955.
[16]
CROUCH J A, TOMASOPETERSON M. Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloae, a new fungal species closely related to Colletotrichum sublineola[J]. Mycologia, 2012, 104(5):1085-1096.
[17]
SUTTON B C. The Coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata[J]. Coelomycetes fungi imperfecti with pycnidia acervuli and stromata, 1980.
[18]
SHERRIFF C, WHELAN M J, ARNOLD G M, et al. rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and Colletotrichum sublineolum[J]. Mycological research, 1995, 99(4):475-478.
[19]
BARONCELLI R, SANZ-MARTIN J M, RECH G E, et al. Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum[J]. Genome announcements, 2014, 2(3):e514-e540.
[20]
BUIATE E A S, XAVIER K V, MOORE N, et al. Correction to: A comparative genomic analysis of putative pathogenicity genes in the host specific sibling species Colletotrichum graminicola and Colletotrichum sublineola[J]. BMC genomics, 2018, 19(1).
[21]
徐婧, 胡兰, 刘可杰, 等. 我国高粱炭疽病症状类型及其病原菌鉴定[J]. 沈阳农业大学学报, 2019, 50(5):529-535.
[22]
CASELA C R. Evidence for dilatory resistance to anthracnose in sorghum[J]. Plant disease, 1993, 77(9):908-908.
[23]
CHALA A, TRONSMO A M, BURBERG M B. Genetic differentiation and gene flow in Colletotrichum sublineolumin Ethiopia, the centre of origin and diversity of sorghum, as revealed by AFLP analysis[J]. Plant pathology, 2011, 60:474-482.
[24]
姜钰, 胡兰, 刘可杰, 等. 高粱种质资源对3种主要病害的抗性鉴定与评价[C]. 植保科技创新与农业精准扶贫—中国植物保护学会2016年学术年会论文集. 2016:350.
[25]
徐婧, 姜钰, 胡兰, 等. 高粱抗炭疽病资源筛选及病情与产量损失的关系[J]. 中国农业科学, 2019, 52(22):4079-4087.
[26]
徐婧, 胡兰, 姜钰. 高粱种质资源对高粱炭疽病的抗性鉴定与评价[C]. 中国植物保护学会2019年学术年会论文集, 2019:66.
[27]
邓小锋, 彭秋, 刘天友, 等. 贵州地方高粱资源炭疽病害田间抗性评估[J]. 西南农业学报, 2017, 30(5):1074-1077.
[28]
DESSALEGN K, LULE D, NIDA H, et al. Evaluation of selected Ethiopian sorghum genotypes for resistance to anthracnose[J]. European journal of plant pathology, 2021, 162(1):79-91.
[29]
LUCIANO V C, ANDRE G C S, RODRIGO V C, et al. Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil[J]. Journal of phytopathology, 2017, 165(7/8):479-485.
[30]
CUEVAS H E, PROM L K, Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan sorghum core collection[J]. BMC genomics, 2020, 21(1):88.
The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) sorghum core collection contains 3011 accessions randomly selected from 77 countries. Genomic and phenotypic characterization of this core collection is necessary to encourage and facilitate its utilization in breeding programs and to improve conservation efforts. In this study, we examined the genome sequences of 318 accessions belonging to the NPGS Sudan sorghum core set, and characterized their agronomic traits and anthracnose resistance response.We identified 183,144 single nucleotide polymorphisms (SNPs) located within or in proximity of 25,124 annotated genes using the genotyping-by-sequencing (GBS) approach. The core collection was genetically highly diverse, with an average pairwise genetic distance of 0.76 among accessions. Population structure and cluster analysis revealed five ancestral populations within the Sudan core set, with moderate to high level of genetic differentiation. In total, 171 accessions (54%) were assigned to one of these populations, which covered 96% of the total genomic variation. Genome scan based on Tajima's D values revealed two populations under balancing selection. Phenotypic analysis showed differences in agronomic traits among the populations, suggesting that these populations belong to different ecogeographical regions. A total of 55 accessions were resistant to anthracnose; these accessions could represent multiple resistance sources. Genome-wide association study based on fixed and random model Circulating Probability (farmCPU) identified genomic regions associated with plant height, flowering time, panicle length and diameter, and anthracnose resistance response. Integrated analysis of the Sudan core set and sorghum association panel indicated that a large portion of the genetic variation in the Sudan core set might be present in breeding programs but remains unexploited within some clusters of accessions.The NPGS Sudan core collection comprises genetically and phenotypically diverse germplasm with multiple anthracnose resistance sources. Population genomic analysis could be used to improve screening efforts and identify the most valuable germplasm for breeding programs. The new GBS data set generated in this study represents a novel genomic resource for plant breeders interested in mining the genetic diversity of the NPGS sorghum collection.
[31]
THOMAS I, HUGO C, RAMASAMY P, et al. Response of sorghum accessions from four african countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose[J]. American journal of plant sciences, 2012(1):125-129.
[32]
PROM L K, ERPELDING J E, NOE M G. Chinese sorghum germplasm evaluated for resistance downy mildew and anthracnose[J]. Communications in biometry and crop science, 2007, 2(1):26-31.
[33]
PROM L K, ISAKEIT T, PERUMAL R, et al. Evaluation of the Ugandan sorghum accessions for grain mold and anthracnose resistance[J]. Crop protection, 2011, 30(5):566-571.
[34]
刘胜毅, 许泽永, 何礼远. 植物与病原菌互作和抗病性的分子机制[J]. 中国农业科学, 1999(S1):94-102.
[35]
王海华, 曹赐生, 高健. 植物抗病性的遗传基础及其分子机制[J]. 湘潭师范学院学报:社会科学版, 2000(6):88-92.
[36]
BOORA K S, FREDERIKSEN R, MAGILL C. DNA- based markers for a recessive gene conferring anthracnose resistance in sorghum[J]. Crop science, 1998, 38(6).
[37]
PANDAY S, SINDHU A, BOORA K S. RAPD based DNA markers linked to anthracnose disease resistance in Sorghum bicolor (L.) Moench[J]. Indian journal of experimental biology, 2002, 40(2):206-211.
[38]
SINGH M, CHAUDHARY K, SINGAL H R, et al. Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor (L.) Moench][J]. Euphytica, 2006, 149(1-2):179-187.
[39]
SINGH M, CHAUDHARY K, BOORA K S. RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum [Sorghum bicolor (L.) Moench][J]. Theoretical and applied genetics, 2006, 114(1):187-192.
[40]
CUEVAS H E, PROM L K, COOPER E A, et al. Genome-wide association mapping of anthracnose (Colletotrichum sublineolum) resistance in the U.S. sorghum association panel[J]. The plant genome, 2018, 11(2):99.
[41]
MENGISTU G, SHIMELIS H, ASSEFA E, et al. Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench][J]. PloS one, 2021,16.
[42]
CRUET-BURGOS C M, CUEVAS H E, PROM L K, et al. Genomic dissection of anthracnose (Colletotrichum sublineolum) resistance response in sorghum differential line SC112-14[J]. G3: genes genomes genetics, 2020, 10(4):1403-1412.
[43]
KATILE S O. Expression of defense genes in sorghum grain mold and tagging and mapping a sorghum anthracnose resistance gene[J]. Dissertations and theses gradworks, 2009.
[44]
RAMASAMY P, MENZ M A, MEHTA P J, et al. Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum[J]. Euphytica, 2009, 165(3):597-606.
[45]
VALERIO H M, ALVES J M S, RESENDE M A, et al. The effects of host diversity in anthracnose management and race composition of Colletotrichum sublineolum in sorghum lineage mixtures[J]. Journal of agricultural science and technology B, 2018, 8(1):15.
[46]
THAKUR R P, RAO V P, WU S M, et al. Genetic resistance to foliar anthracnose in sorghum and pathogenic variability in Colletotrichum graminicola[J]. Indian phytopathology, 2007, 60(1):13-23.
[47]
ABREHA K B, ORTIZ R, CARLSSON A S, et al. Understanding the sorghum Colletotrichum sublineola interactions for enhanced host resistance[J]. Frontiers in plant science, 2021, 12:641969.
[48]
STUTTS L R, VERMERRIS W. Elucidating anthracnose resistance mechanisms in sorghum-a review[J]. Phytopathology, 2020, 110(12):1863-1876.
Sorghum () is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and at the molecular level. This includes releases of the sorghum genome and the draft genome of, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.
[49]
WOLFE M S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance[J]. Annual review of phytopathology, 1985, 23(1):251-273.
[50]
陈满静, 任艳, 彭秋, 等. 基于BSA-seq方法定位贵州高粱抗炭疽病害关键遗传区段[J]. 江苏农业科学, 2022, 50(5):28-34.

基金

浙江省农业新品种选育重大科技专项资助“旱粮新品种选育”(2021C02064-4)
PDF(1073 KB)

文章所在专题

土壤重金属污染

Accesses

Citation

Detail

段落导航
相关文章

/