
高粱炭疽病研究进展
A Review of Studies on Sorghum Anthracnose
高粱作为中国主要的酿造原料之一,在国民经济发展中占据重要地位。高粱炭疽病是高粱的主要病害之一,在整个生育期中均可发病,且在温暖湿润的热带和亚热带栽种地区更易发生和流行,不仅影响植株的正常生长,严重时会引起产量的大幅下降和籽粒品质的劣变。多年来,高粱病理学家和育种家对高粱炭疽病病原菌菌株分离、病害发生流行规律、发生原因、寄主抗性利用和抗炭疽病基因定位等方面进行了广泛的研究,取得了一些进展。这些研究为炭疽病的生化防控以及培育抗炭疽病品种奠定了基础。开展高粱炭疽病研究,发掘更丰富多样的优异抗性种质资源,减少农药使用,不仅可以满足中国高粱产业对天然有机高粱原料的巨大需求,还可以推动高粱生产向高产优质转变。对高粱炭疽病的分布和发病症状、炭疽病病原菌侵染机理、病害发生流行规律及流行原因、抗性资源鉴定和高粱抗炭疽病基因定位的相关研究进展进行了综合分析和论述,以期从分子水平上更好地认识高粱与炭疽病病原菌之间的相互作用,为高粱炭疽病研究提供参考。
Sorghum, as one of the main brewing materials in China, plays an important role in the development of national economy. Sorghum anthracnose is one of the main diseases of sorghum throughout its whole life cycle. It is more likely to occur and spread in warm and humid tropical and subtropical cultivated areas, and seriously affects the yield of sorghum and reduces grain quality. For several decades, sorghum pathologists and breeders have made extensive research on the occurrence and prevalence of the disease, including the isolation of sorghum anthrax pathogenic bacteria, the utilization of host resistance and the gene location of resistance to anthracnose in sorghum, some research progresses have been obtained, which laid a foundation for biochemical prevention of anthracnose and breeding varieties resistant to anthracnose. Carrying out research on sorghum anthracnose, exploring more abundant and excellent resistant germplasm resources and reducing the use of pesticides can not only meet the huge demand of China’s natural organic sorghum industry, but also promote the high-yield and high-quality production of sorghum. This review summarizes the distribution and symptoms of sorghum anthracnose, infection mechanism of pathogen, epidemic rules and causes of anthracnose, identification of resistance resources and gene location of sorghum anthracnose, which will enable a better understanding of the interaction between sorghum and Colletotrichum sublineola at the molecular level and provide reference for sorghum anthracnose research.
高粱 / 炭疽病 / 病原菌 / 病害 / 抗性资源 / 基因定位 {{custom_keyword}} /
sorghum / anthracnose / pathogenic bacteria / disease / resistant resources / gene location {{custom_keyword}} /
表1 试验材料 |
名称 | 规格 | 生产企业 |
---|---|---|
四氧化三铁 | 分析纯 | 天津博迪化工股份有限公司 |
四乙氧基硅烷 | 分析纯 | 天津市福晨化学试剂厂 |
γ-氨丙基三乙氧基硅烷 | 分析纯 | 湖北武大有机硅新材料股份有限公司 |
氯乙酸钠 | 分析纯 | 天津市光复精细化工研究所 |
表2 试验设备与仪器 |
名称 | 型号 | 生产企业 |
---|---|---|
电热鼓风干燥箱 | 101型 | 北京市永光明医疗机械厂 |
电子天平 | BS 224 S | 北京赛多利斯仪器系统有限公司 |
台式高速离心机 | TG16 | 长沙英泰仪器有限公司 |
超声波清洗器 | KQ-500E | 江苏省昆山市超声仪器有限公司 |
原子吸收光谱仪 | ZEEnit700P | 德国耶拿分析仪器股份有限公司 |
台式恒温振荡器 | THZ-C | 太仓市华美生化仪器厂 |
磁力搅拌器 | FlatSpin | 大龙兴创实验仪器有限公司 |
振动磨研样机 | RK/XZN-100 | 武汉洛克粉磨设备制造有限公司 |
表3 土壤重金属镉污染移除净化方案参数设置 |
条件 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|
样本/个 | 3 | 3 | 3 | 3 |
温度 | 室温 | 室温 | 室温 | 室温 |
螯合剂浓度/(mol/L) | 0.05 | 0.01、0.05、0.10、0.20 | 0.05 | 0.05 |
净化时间/min | 60 | 60 | 0~120 | 60 |
粒径/目 | 50 | 50 | 50 | 50、100、200 |
[1] |
卢庆善. 高粱学[M]. 北京: 中国农业出版社, 1999.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
卢庆善, 孙毅, 华泽田. 农作物杂种优势[M]. 北京: 中国农业科技出版社, 2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
丁国祥. 高粱炭疽病的发生与防治[J]. 四川农业科技, 2014(2):44-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Development of sorghum anthracnose in time and space on susceptible ('BTx623' and 'Pioneer 8313') and resistant ('Cargill 888Y') sorghum (Sorghum bicolor) cultivars was investigated in field plots inoculated with a mixture of three strains (T430-SW, Ar54-SW, and ArSS-1SW) of Colletotrichum sublineolum in 2001 and 2002. After slow development during early growth stages, sorghum anthracnose developed rapidly after flowering. The logistic model provided a good statistical fit for disease progress curves for sorghum anthracnose in Arkansas. Compared to susceptible cultivars, the resistant cultivar had significantly lower values for the standard area under the disease progress curve, a lower upper asymptote, and delayed epidemic onset. However, there were no significant differences in infection rate and the time of the inflection points, the times at which the disease proportion equaled values of one-half of upper asymptotes, among the three cultivars. The negative exponential model more closely described disease gradients of sorghum anthracnose than the inverse power law model. There were significant differences in intercepts but not in slopes and half-distance between the resistant and susceptible cultivars. The slopes of disease gradients were significantly lower at 78 days after inoculation (DAI) than at 57 DAI on the three cultivars. The results could provide epidemiological components of sorghum anthracnose to help evaluate sorghum cultivars and breeding lines under field conditions.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
邓小锋, 彭秋, 李青风, 等. 高粱炭疽病抗性机理研究进展[J]. 贵州农业科学, 2019, 47(11):68-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
李志. 浅谈高粱种植主要病害的防治[J]. 农业与技术, 2018, 38(10):34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王秋月, 李清虎, 尹学伟, 等. 不同高粱品种对炭疽病的抗性及其与产量的相关性研究[J]. 农业科技通讯, 2020(4):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
孔凡信, 徐婧, 刘志. 辽西高粱炭疽病的发生与防控[J]. 辽宁农业科学, 2020(3):48-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
杨蕾, 姜钰, 徐秀德. 高粱炭疽病发生与有效控制研究进展[J]. 辽宁农业科学, 2005(5):40-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
徐婧, 胡兰, 刘可杰, 等. 我国高粱炭疽病症状类型及其病原菌鉴定[J]. 沈阳农业大学学报, 2019, 50(5):529-535.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
姜钰, 胡兰, 刘可杰, 等. 高粱种质资源对3种主要病害的抗性鉴定与评价[C]. 植保科技创新与农业精准扶贫—中国植物保护学会2016年学术年会论文集. 2016:350.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
徐婧, 姜钰, 胡兰, 等. 高粱抗炭疽病资源筛选及病情与产量损失的关系[J]. 中国农业科学, 2019, 52(22):4079-4087.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
徐婧, 胡兰, 姜钰. 高粱种质资源对高粱炭疽病的抗性鉴定与评价[C]. 中国植物保护学会2019年学术年会论文集, 2019:66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
邓小锋, 彭秋, 刘天友, 等. 贵州地方高粱资源炭疽病害田间抗性评估[J]. 西南农业学报, 2017, 30(5):1074-1077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) sorghum core collection contains 3011 accessions randomly selected from 77 countries. Genomic and phenotypic characterization of this core collection is necessary to encourage and facilitate its utilization in breeding programs and to improve conservation efforts. In this study, we examined the genome sequences of 318 accessions belonging to the NPGS Sudan sorghum core set, and characterized their agronomic traits and anthracnose resistance response.We identified 183,144 single nucleotide polymorphisms (SNPs) located within or in proximity of 25,124 annotated genes using the genotyping-by-sequencing (GBS) approach. The core collection was genetically highly diverse, with an average pairwise genetic distance of 0.76 among accessions. Population structure and cluster analysis revealed five ancestral populations within the Sudan core set, with moderate to high level of genetic differentiation. In total, 171 accessions (54%) were assigned to one of these populations, which covered 96% of the total genomic variation. Genome scan based on Tajima's D values revealed two populations under balancing selection. Phenotypic analysis showed differences in agronomic traits among the populations, suggesting that these populations belong to different ecogeographical regions. A total of 55 accessions were resistant to anthracnose; these accessions could represent multiple resistance sources. Genome-wide association study based on fixed and random model Circulating Probability (farmCPU) identified genomic regions associated with plant height, flowering time, panicle length and diameter, and anthracnose resistance response. Integrated analysis of the Sudan core set and sorghum association panel indicated that a large portion of the genetic variation in the Sudan core set might be present in breeding programs but remains unexploited within some clusters of accessions.The NPGS Sudan core collection comprises genetically and phenotypically diverse germplasm with multiple anthracnose resistance sources. Population genomic analysis could be used to improve screening efforts and identify the most valuable germplasm for breeding programs. The new GBS data set generated in this study represents a novel genomic resource for plant breeders interested in mining the genetic diversity of the NPGS sorghum collection.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
刘胜毅, 许泽永, 何礼远. 植物与病原菌互作和抗病性的分子机制[J]. 中国农业科学, 1999(S1):94-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
王海华, 曹赐生, 高健. 植物抗病性的遗传基础及其分子机制[J]. 湘潭师范学院学报:社会科学版, 2000(6):88-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
Sorghum () is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and at the molecular level. This includes releases of the sorghum genome and the draft genome of, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
陈满静, 任艳, 彭秋, 等. 基于BSA-seq方法定位贵州高粱抗炭疽病害关键遗传区段[J]. 江苏农业科学, 2022, 50(5):28-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |