
腐殖酸小麦专用肥及其减量在豫北潮土区小麦上的施用效果
Application Effects of Wheat Specific Humic Acid Fertilizer and Its Reduction on Wheat in Fluvo-aquic Soil Area in North Henan
采用大田试验,研究腐殖酸小麦专用肥及其减量在豫北潮土区小麦上的施用效果,以明确腐殖酸肥料的减肥潜力,为其高效合理施用提供理论支撑。试验设置7个处理,分别为:T1(不施肥对照),T2(习惯施肥)和T3(优化施肥、施用普通小麦专用肥),T4、T5、T6和T7处理(分别施用100%、90%、80%和70%腐殖酸小麦专用肥,其中T4和T3处理等养分),考察不同处理小麦产量、养分吸收利用效率及土壤养分含量的差异。结果表明:同等养分条件下,T4处理的小麦总氮、钾吸收量较T3处理分别增加5.6%和4.7%,成熟期小麦秸秆和籽粒中磷含量以及越冬期土壤碱解氮和速效钾含量也有所提高,但产量未增加。T5处理的小麦产量最高,分别较T1、T2、T3、T4、T6和T7处理增加20.0%、4.7%、8.4%、9.8%、13.9%和18.4%;肥料农学利用效率和肥料偏生产力也最高,分别为5.18 kg/kg和31.07 kg/kg。T6和T7处理的小麦总养分积累量、开花期土壤碱解氮和有效磷含量显著下降,产量和肥料农学利用效率也低于其他施肥处理,T7处理的成熟期土壤有效磷和速效钾含量也显著降低。本试验条件下,豫北潮土区施用90%腐殖酸小麦专用肥可一定程度上实现减肥增产。
A field experiment was conducted to study the application effects of wheat specific humic acid fertilizer (Triticum aestivum L.) and its reduction on wheat in fluvo-aquic soil area in north Henan, in order to clarify the potential of humic acid fertilizer reduction and provide theoretical support for fertilizer efficient and rational application. In the experiment, seven treatments were set up: T1 (the control, without fertilization), T2 (conventional fertilization), T3 (optimized fertilization, applying wheat specific common fertilizers), T4, T5, T6 and T7 (applying 100%, 90%, 80% and 70% wheat specific humic acid fertilizer respectively, and T4 and T3 had the same amount of nutrients). We investigated the differences of yield, and nutrient uptake and use efficiency of wheat, as well as the content of soil nutrients among different treatments. The results showed that under the same nutrient condition, compared with T3, the total nitrogen (N) and potassium (K) accumulation of wheat under T4 increased by 5.6% and 4.7% respectively. There was also obvious increase in phosphorus (P) content in wheat straw and grain at the mature stage, and the content of soil alkali-hydrolyzed N and available K at the wintering stage, but the yield did not increase. The yield of T5 was the highest, which was increased by 20.0%, 4.7%, 8.4%, 9.8%, 13.9% and 18.4% compared with that of T1, T2, T3, T4, T6 and T7; moreover, the fertilizer agronomy efficiency and fertilizer partial productivity of T5 were also the highest, which were 5.18 kg/kg and 31.07 kg/kg, respectively. There were significant decreases of the total nutrient accumulation of wheat, and soil alkali-hydrolyzed N content and available P content at the flowering stage under T6 and T7, and the yield and fertilizer agronomy efficiency of the two treatments were also lower than those of other fertilization treatments. Moreover, the content of soil available P and available K of T7 were also significantly reduced at the harvest stage. Under the conditions of this experiment, the application of 90% wheat specific humic acid fertilizer could reduce fertilizer amount and improve wheat yield to a certain extent in fluvo-aquic soil area in north Henan.
腐殖酸小麦专用肥 / 减量 / 小麦 / 潮土区 / 施用效果 {{custom_keyword}} /
wheat specific humic acid fertilizer / reduction / wheat (Triticum aestivum L.) / fluvo-aquic soil area / application effects {{custom_keyword}} /
表1 不同处理中养分用量kg/hm2 |
处理 | 基肥 | 追肥 | 总养分量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |||
T1(CK) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
T2 | 153 | 180 | 45 | 57.5 | 0 | 0 | 210.5 | 180 | 45 | ||
T3 | 119 | 140 | 35 | 57.5 | 0 | 0 | 176.5 | 140 | 35 | ||
T4 | 119 | 140 | 35 | 57.5 | 0 | 0 | 176.5 | 140 | 35 | ||
T5 | 107.1 | 126 | 31.5 | 57.5 | 0 | 0 | 164.6 | 126 | 31.5 | ||
T6 | 95.2 | 112 | 28 | 57.5 | 0 | 0 | 152.7 | 112 | 28 | ||
T7 | 83.3 | 98 | 24.5 | 57.5 | 0 | 0 | 140.8 | 98 | 24.5 |
表2 腐殖酸小麦专用肥及其减量对小麦产量及其构成因子的影响 |
处理 | 千粒重/g | 株高/cm | 穗长/cm | 穗粒数 | 穗质量/g | 穗数/ (万/hm2) | 产量/ (kg/hm2) |
---|---|---|---|---|---|---|---|
T1(CK) | 47.10b | 63.39b | 6.55c | 29.34c | 1.85c | 433.65b | 8339.38c |
T2 | 44.53c | 70.90a | 7.77a | 35.29b | 2.25abc | 453.66ab | 9562.48b |
T3 | 48.30ab | 69.13a | 7.02b | 33.26bc | 2.18abc | 583.75a | 9228.91b |
T4 | 48.67ab | 68.67a | 7.29b | 32.67bc | 2.10bc | 515.93ab | 9117.72b |
T5 | 46.93b | 72.33a | 7.62a | 34.16b | 2.14abc | 517.04ab | 10007.25a |
T6 | 51.07a | 68.09a | 7.71a | 37.93a | 2.52a | 487.02ab | 8784.14bc |
T7 | 52.00a | 70.59a | 7.67a | 37.01a | 2.31ab | 477.01ab | 8450.57c |
注:同列数字后不同小写字母表示处理间差异显著(P<0.05)。 |
表3 腐殖酸小麦专用肥及其减量对小麦养分含量的影响mg/kg |
处理 | 越冬期秸秆 | 开花期秸秆 | 成熟期秸秆 | 成熟期籽粒 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | N | P | K | ||||
T1 | 27.43b | 2.48c | 17.88d | 16.97b | 1.60c | 18.55b | 3.52b | 0.16d | 17.24b | 21.07a | 2.77b | 2.80c | |||
T2 | 30.40a | 2.92a | 20.76a | 16.18bc | 2.18a | 19.27a | 4.87a | 0.32a | 17.66a | 21.36a | 2.82a | 2.80c | |||
T3 | 29.92a | 2.86a | 20.70a | 15.62c | 1.94ab | 16.44c | 3.36b | 0.16d | 16.16c | 20.02a | 2.76b | 2.90b | |||
T4 | 30.14a | 2.89a | 19.95b | 18.92a | 1.88b | 18.84b | 3.56b | 0.22c | 16.61c | 21.25a | 2.80a | 2.80c | |||
T5 | 30.37a | 2.84a | 19.72b | 16.46b | 1.93ab | 18.16b | 3.58b | 0.20c | 17.14b | 20.26a | 2.82a | 2.79c | |||
T6 | 30.38a | 2.92a | 19.63b | 16.68b | 2.01ab | 18.73b | 3.76b | 0.26b | 16.17c | 21.28a | 2.80a | 3.04a | |||
T7 | 30.06a | 2.71b | 18.76c | 17.10b | 1.80b | 16.12c | 3.64b | 0.20c | 16.00c | 20.87a | 2.62c | 3.04a |
注:同列数字后不同小写字母表示处理间差异显著(P<0.05)。 |
表4 腐殖酸小麦专用肥及其减量对小麦养分积累量的影响 kg/hm2 |
处理 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
越冬期秸秆 | N | 40.20d | 62.96a | 55.59b | 55.05b | 56.39b | 55.04b | 47.46c | |||||
P | 3.63d | 6.05a | 5.31b | 5.28b | 5.27b | 5.29b | 4.28c | ||||||
K | 26.20c | 42.99a | 38.46ab | 36.44b | 36.62b | 35.57b | 29.62bc | ||||||
开花期秸秆 | N | 150.75c | 188.49b | 195.69ab | 209.74a | 186.76b | 189.12b | 188.22b | |||||
P | 14.21c | 25.40a | 24.30a | 20.84b | 21.90ab | 22.79ab | 19.81b | ||||||
K | 18.55b | 19.27a | 16.44c | 18.84b | 18.16b | 18.73b | 16.12c | ||||||
成熟期秸秆 | N | 28.18c | 46.62a | 33.62bc | 36.81b | 30.21c | 32.61bc | 30.36c | |||||
P | 1.28c | 3.06a | 1.60bc | 2.27b | 1.69bc | 2.25b | 1.67bc | ||||||
K | 138.02cd | 169.07b | 161.72b | 171.76a | 144.65c | 140.24c | 133.43d | ||||||
处理 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | ||||||
成熟期籽粒 | N | 175.71d | 204.25a | 184.76c | 193.75b | 202.75a | 186.93c | 176.36d | |||||
P | 23.10bc | 26.97ab | 25.47b | 25.53b | 28.22a | 24.60b | 22.14c | ||||||
K | 23.35b | 26.77a | 26.76a | 25.53ab | 27.92a | 26.70a | 25.69ab | ||||||
成熟期总积累量 | N | 203.89d | 250.87a | 218.38c | 230.56b | 232.96b | 219.54c | 206.72d | |||||
P | 24.38c | 30.03a | 27.07b | 27.80b | 29.91a | 26.85b | 23.81c | ||||||
K | 161.37c | 195.84a | 188.48ab | 197.29a | 172.57b | 166.94bc | 159.12c |
注:同行数字后不同小写字母表示处理间差异显著(P<0.05)。 |
表5 腐殖酸小麦专用肥及其减量对不同小麦生育期土壤养分含量的影响 |
处理 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | |
---|---|---|---|---|---|---|---|---|
越冬期 | 碱解氮/(mg/kg) | 48c | 80a | 44c | 66b | 74ab | 67b | 68b |
有效磷/(mg/kg) | 15.1b | 22.8a | 21.2a | 24.3a | 14.6b | 14.4b | 11.8c | |
速效钾/(mg/kg) | 120ab | 135a | 108b | 120ab | 123ab | 131a | 105b | |
开花期 | 碱解氮/(mg/kg) | 68b | 70ab | 74a | 70ab | 76a | 66b | 57c |
有效磷/(mg/kg) | 8.6d | 10.4c | 13.0b | 14.4b | 16.4a | 9.5cd | 9.6cd | |
速效钾/(mg/kg) | 94a | 82b | 84b | 82b | 86b | 82b | 82b | |
成熟期 | 全氮/(g/kg) | 0.82b | 0.92ab | 0.92ab | 1.00a | 0.84b | 0.86b | 0.76b |
全磷/(g/kg) | 0.446a | 0.477a | 0.382ab | 0.347b | 0.405ab | 0.305b | 0.334b | |
全钾/(g/kg) | 16.92ab | 16.76ab | 16.39ab | 15.48b | 16.22ab | 15.92b | 17.14a | |
碱解氮/(mg/kg) | 73a | 58b | 46b | 51b | 51b | 44b | 48b | |
有效磷/(mg/kg) | 12.1b | 26.6a | 24.1a | 14.6b | 12.0b | 13.1b | 7.8c | |
速效钾/(mg/kg) | 90b | 101a | 86b | 90b | 90b | 94b | 75c |
注:同行数字后不同小写字母表示处理间差异显著(P<0.05)。 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
闫湘, 金继云, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率[J]. 土壤, 2017, 49(6):1067-1077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
冯尚善, 崔荣政, 王臣. 我国新型肥料产业发展现状及展望[J]. 磷肥与复肥, 2020, 35(10):1-3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
周丽平, 袁亮, 赵秉强, 等. 腐殖酸单侧刺激对玉米根系生长的影响[J]. 中国农业科学, 2022, 55(2):339-349.
【目的】腐殖酸的结构复杂,功能多样,研究腐殖酸对玉米根系生长的直接和间接效应,揭示腐殖酸对玉米根系调控的机制,可为腐殖酸肥料增效剂的进一步开发与应用提供理论支撑。【方法】以郑单958作为供试玉米品种,采用霍格兰营养液培养玉米育苗,将玉米根系分根设计,处理分别为CK-左对照侧(CK-C<sub>1</sub>)、CK-右对照侧(CK-C<sub>2</sub>)、HA-未施侧(HA-C)、HA-施用侧(HA-T)、OHA3-未施侧(OHA3-C)、OHA3-施用侧(OHA3-T)、OHA6-未施侧(OHA6-C)和OHA6-施用侧(OHA6-T)8个处理。研究其对玉米生物量、根系活力、根系形态以及不同器官主要化学组分的影响。【结果】(1)分根单侧施用腐殖酸显著增加玉米施用侧和未施侧的根鲜重,与对照相比,施用侧提高21.9%—78.6%,未施侧提高27.9%—49.3%;(2)添加腐殖酸显著增加玉米施用侧和未施侧的根系活力和TTC还原总量。与对照相比,OHA6-施用侧处理的玉米根系活力和根系TTC还原总量提高幅度最大,分别提高76.9%和216.9%,HA-施用侧和OHA3-施用侧处理与对照相比,玉米根系活力分别提高59.8%和35.1%, OHA6-未施侧、HA-未施侧和OHA3-未施侧处理与对照相比,玉米根系活力分别提高62.2%、53.6%和25.5%;(3)添加腐殖酸处理显著增加玉米未施侧和施用侧的根体积、根表面积、根平均直径、根长度和根数量;(4)分根单侧施用腐殖酸可有效增加玉米根系酯类化合物、蛋白质类物质、氨基酸类物质、核酸纤维素和多糖的含量,腐殖酸处理的施用侧较未施侧相比,更有利于玉米根系碳水化合物的积累,而腐殖酸处理下的未施侧更有利于玉米根系核酸的积累。各腐殖酸处理的玉米施用侧和未施侧地上部碳水化合物的含量明显高于空白处理。【结论】分根单侧施用腐殖酸可增加玉米根鲜重、根干重、根系活力和根系TTC还原总量,且腐殖酸施用侧的作用效果优于未施侧,单侧施用腐殖酸处理的整株根系生长也优于两侧均未施腐殖酸的对照处理。因此,腐殖酸对玉米根系生长既存在直接效应又存在间接效应,且直接效应大于间接效应。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
李伟, 袁亮, 张水勤, 等. 中低分子量腐殖酸提高冬小麦磷吸收和产量的机理[J]. 植物营养与肥料学报, 2020, 26(11):2043-2050.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
程亮, 张保林, 王杰, 等. 腐殖酸肥料的研究进展[J]. 中国土壤与肥料, 2011(5):1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
杨艳, 王勤俭, 王峰, 等. 矿源腐殖酸肥料研发与产业化发展[J]. 浙江农业科学, 2021, 62(8):1621-1624.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
陈亮, 常丽, 桂秀平, 等. 腐殖酸增值复混肥料及其减量在花椰菜上的应用效果[J]. 灌溉排水学报, 2021, 40(2):107-110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
李欢, 杨清夏, 李扬, 等. 减氮及增施腐殖酸对玉米产量和氮肥利用率的影响[J]. 生态学杂志, 2021, 40(5):1331-1339.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
刘诗璇, 邹洪涛, 张玉龙. 腐殖酸尿素对土壤供氮特征及东北玉米生长、产量的影响[J]. 沈阳农业大学学报, 2020, 51(5):522-529.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
刘盛林, 董晓霞, 孙泽强, 等. 尿素中添加腐殖酸提升冬小麦产量和氮吸收效率[J]. 中国农学通报, 2020, 36(14)16-21.
旨在明确腐殖酸添加量对尿素肥效的影响,为腐殖酸尿素在华北石灰性土壤冬小麦增产中的作用提供支持资料。田间条件下,通过施用不同用量腐殖酸添加剂尿素(I-VI型,腐殖酸添加量1%~6%),与普通尿素处理作对比,比较其对改善氮素吸收和冬小麦产量持续提高的影响。试验结果表明:腐殖酸尿素添加量与冬小麦产量和氮吸收密切相关。施氮量相同时,IV型腐殖酸尿素能够显著增加冬小麦产量并促进氮素向籽粒中运移,腐殖酸尿素显著提高穗粒数(I和II型腐殖酸尿素)和千粒重(II、V和VI型腐殖酸尿素)等产量构成因素;III型腐殖酸尿素显著提高冬小麦氮吸收率,但均对锰吸收、土壤有机质含量、出苗数、分蘖数、有效蘖数和穗数等无显著促进作用。由此可见,腐殖酸尿素肥效与腐殖酸添加剂量密切相关,4%腐殖酸作为尿素添加剂时能显著增加高产冬小麦产量和构成因素,3%腐殖酸作为尿素中添加剂时显著提高氮吸收率。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
郑东方, 许嘉阳, 许自成, 等. 钾肥和腐殖酸互作对烤烟有机钾盐指数的影响[J]. 土壤学报, 2015, 52(3):637-645.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
张爱华, 况胜剑, 张钦, 等. 腐殖酸型复合肥对马铃薯生长及产质量的影响[J]. 耕作与栽培, 2021, 41(5):32-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王好斌, 范钧翔, 谷守玉, 等. 小麦专用肥在河南省典型地区的应用效果研究[J]. 麦类作物学报, 2021, 41(1):111-117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
曹廷杰, 胡卫国, 赵虹, 等. 国审小麦品种‘百农207’适应性分析[J]. 分子植物育种, 2021, 19(20):6876-6883.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
彭舜磊, 李鹏, 王梓臣, 等. 河南省农业面源污染负荷估算及区划[J]. 水土保持研究, 2018, 25(1):225-230.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
蔡海燕, 柳斌辉, 王变银, 等. 黄淮海流域农户小麦生产化肥节约潜力分析[J]. 河北农业科学, 2020, 24(1):93-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王改革, 任宁, 汪洋, 等. 2014—2018年河南省冬小麦施肥现状及增产潜力评价[J]. 农学学报, 2022, 12(12):8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
李青松, 韩燕来, 邓素君, 等. 豫北平原典型小麦-玉米轮作高产区节肥潜力分析[J]. 麦类作物学报, 2018, 38(10):1216-1221.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
闫双堆, 刘利军, 洪坚平, 等. 腐殖酸-尿素络合物对尿素转化及氮素释放的影响[J]. 中国生态农业学报, 2008, 16(1):109-112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3):594-602.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
闫军营, 孙笑梅, 程传凯, 等. 腐殖酸与氮肥配施对豫北潮土冬小麦光合特性的影响[J]. 江苏农业科学, 2020, 48(21):104-110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
张运红, 黄绍敏, 和爱玲, 等. 磷酸二铵添加增效剂对小麦-花生轮作系统作物产量和磷肥吸收利用的影响[J]. 麦类作物学报, 2020, 40(11):1342-1350.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |