
作物智慧栽培学——信息-农艺-农机深度融合的新农科
Smart Crop Cultivation: A New Agricultural Science Toward Deep Integration of Information, Agronomy and Machinery
在社会发展进入万物智联新时代、农业科学步入数据密集型知识发现的新阶段和智慧农业技术成为国家实施乡村振兴战略的重要抓手的背景下,传统作物栽培学理论技术体系已无法满足智慧栽培发展的需要,亟需加快与其他相关学科深度融合、协同创新,发展作物智慧栽培学。本研究首先阐述了作物智慧栽培的内涵和特征,然后阐明了作物智慧栽培学的概念、研究内容和关键技术以及相应的学科体系,最后提出了作物栽培学的发展趋势、面临挑战及对策建议。围绕智慧栽培中“联接、感知、认知、管控”四大关键环节开展重大科学发现、前沿技术突破和产业模式创新,构建智慧栽培理论技术体系,推动传统栽培向智慧栽培转型升级,有助于实现作物生产的可持续发展,加速推进农业现代化。
Human society has developed into a new era of intelligent connection of everything, agricultural science has entered a new stage of data-intensive knowledge discovery, and smart agriculture has become an important part to support the implementation of the Rural Revitalization Strategy. Under this background, the traditional theoretical and technical system of crop cultivation could no longer meet the needs of the development of smart crop cultivation, and it is urgent to accelerate the deep integration and collaborative innovation with other related disciplines to develop smart crop cultivation. This study first elaborates the connotation and characteristics of smart crop cultivation, then clarifies the concept, research content and key technologies and the corresponding disciplinary system, and finally proposes the development trend, challenges, and countermeasures of crop cultivation. To implement major scientific discoveries, frontier technology breakthroughs and industrial model innovations around the four key aspects of connection, perception, cognition and control in smart cultivation, to build a theoretical and technological system of smart cultivation, and to promote the transformation and upgrading of traditional cultivation to smart cultivation will help achieve sustainable development of crop production and accelerate agricultural modernization.
智慧栽培 / 信息-农艺-农机融合 / 智慧管控 / 大数据 {{custom_keyword}} /
smart crop cultivation / information-agronomy-machinery integration / smart control / big data {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王静远, 李超, 熊璋, 等. 以数据为中心的智慧城市研究综述[J]. 计算机研究与发展, 2014, 51(2):239-259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
倪明选, 张黔, 谭浩宇, 等. 智慧医疗——从物联网到云计算[J]. 中国科学:信息科学, 2013, 43(4):515-528.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
陈阜, 赵明. 作物栽培与耕作学科发展[J]. 农学学报, 2018, 8(1):59-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
曹卫星. 作物智能栽培学:信息科学与作物栽培学的结合[J]. 科技导报, 2000(1):37-40,31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
刘旭. 中国作物栽培历史的阶段划分和传统农业形成与发展[J]. 中国农史, 2012, 31(2):3-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
中国科学技术协会, 中国作物学会. 作物学学科发展报告(2011—2012)[M]. 北京: 中国科学技术出版社,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
于振文. 新世纪作物栽培学与作物生产的关系[J]. 作物杂志, 2003, 1:11-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
谢建华, 张洪程. 作物栽培改革发展30年回顾与展望[C]. 作物栽培学发展学术研讨会.中国作物学会, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
邓建平, 葛自强, 顾万荣. 中国作物栽培科学发展的回顾与展望[J]. 中国农学通报, 2005(12):179-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
高亮之,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
赵春江, 诸德辉, 李鸿祥, 等. 小麦栽培管理计算机专家系统的研究与应用[J]. 中国农业科学, 1997, 30(5):42-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
徐宗本. 数字化网络化智能化把握新一代信息技术的聚焦点[J]. 网信军民融合, 2019, 3:25-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
潘云鹤. 人类世界正由两元空间变成三元空间[N]. 中国信息化周报,2019-11-11(7).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
苏敏, 周乐, 张金宇, 等. 信息物理融合系统应用前景研究[J]. 中国新通信, 2016, 18(21):48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李洪阳, 魏慕恒, 黄洁, 等. 信息物理系统技术综述[J]. 自动化学报, 2019, 45(1):37-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
罗俊海, 肖志辉, 仲昌平. 信息物理系统的发展趋势分析[J]. 电信科学, 2012, 2:127-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1):1-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
顾生浩, 卢宪菊, 王勇健, 等. 数字孪生系统在农业生产中的应用探讨[J]. 中国农业科技导报, 2021, 23(10):82-89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
顾峥, 高阳. 第四范式视角下的大数据科学[J]. 南京信息工程大学学报(自然科学版), 2019, 11(3):251-255.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
殷新佑. 对预测作物发育的积温法的评价[J]. 作物学报, 1999, 25(4):474-482.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
The primary effect of the response of plants to rising atmospheric CO2 (Ca) is to increase resource use efficiency. Elevated Ca reduces stomatal conductance and transpiration and improves water use efficiency, and at the same time it stimulates higher rates of photosynthesis and increases light-use efficiency. Acclimation of photosynthesis during long-term exposure to elevated Ca reduces key enzymes of the photosynthetic carbon reduction cycle, and this increases nutrient use efficiency. Improved soil-water balance, increased carbon uptake in the shade, greater carbon to nitrogen ratio, and reduced nutrient quality for insect and animal grazers are all possibilities that have been observed in field studies of the effects of elevated Ca. These effects have major consequences for agriculture and native ecosystems in a world of rising atmospheric Ca and climate change.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
张宾, 赵明, 董志强, 等. 作物产量“三合结构”定量表达及高产分析[J]. 作物学报, 2007, 33(10):1674-1681.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
凌启鸿, 苏祖芳, 张洪程, 等. 水稻品种不同生育类型的叶龄模式[J]. 中国农业科学, 1983(1):9-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
王向峰, 才卓. 中国种业科技创新的智能时代——“玉米育种4.0”[J]. 玉米科学, 2019, 27(1):1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
张颖, 廖生进, 王璟璐, 等. 信息技术与智能装备助力智能设计育种[J]. 吉林农业大学学报, 2021, 43(2):119-129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
新华社. 中共中央国务院印发《乡村振兴战略规划(2018-2022年)》[EB/OL]. http://www.xinhuanet.com/2018-09/26/c_1123487123.htm. 2018-09-26/2021-12-05.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
新华社. 中共中央办公厅国务院办公厅印发《数字乡村发展战略纲要》[EB/OL]. http://www.xinhuanet.com/politics/2019-05/16/c_1124504231.htm. 2019-05-16/2021-12-05.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
新华社. 国务院印发《新一代人工智能发展规划》[EB/OL]. http://www.xinhuanet.com/2017-07/20/c_1121353544.htm. 2017-07-20/2021-12-05.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
朱艳, 汤亮, 刘蕾蕾, 等. 作物生长模型(CropGrow)研究进展[J]. 中国农业科学, 2020, 53(16):3235-3256.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
曹卫星, 朱艳, 田永超, 等. 作物精确栽培技术的构建与实现[J]. 中国农业科学, 2011, 44(19):3955-3969.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12):277-293.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
梅旭荣. 农业气象学发展现状及展望[J]. 农学学报, 2018, 8(1):61-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
葛文杰, 赵春江. 农业物联网研究与应用现状及发展对策研究[J]. 农业机械学报, 2014, 45(7):222-230,277.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
孙忠富, 杜克明, 郑飞翔, 等. 大数据在智慧农业中研究与应用展望[J]. 中国农业科技导报, 2013, 15(6):63-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2021, 2(4):1-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
感谢中国农业大学王志敏教授对本文给予的建议和指导!
文章所在专题
/
〈 |
|
〉 |