
冀北山区矿区周边镉铅污染农田钝化修复研究
The Immobilization of Cd and Pb in Contaminated Soil Around Mines in Mountainous Area of Northern Hebei
为了筛选出一种适用于冀北山区矿区周边铅镉污染农田的土壤调理剂配方,本研究采用室内土壤培养试验,以石灰、蒙脱石、生物炭、沸石为材料,研究不同组合方式和添加量(0.5%、1%、3%、5%)对土壤中有效态Cd和Pb含量的影响。结果表明,土壤有效态Cd含量、有效态Pb含量和土壤pH因土壤调理剂不同组合方式和不同添加量呈现不同的变化趋势。与对照相比,随着添加量的增加,有效态Cd和Pb含量呈下降趋势,且不同材料组合的钝化效果均好于单一材料处理。按照20%~30%、10%~20%、40%~50%和0%~30%比例将石灰、蒙脱石、生物炭和沸石组合,对该地区土壤中有效态Cd和Pb的钝化效果最好。
According to Cd and Pb pollution status in soil around mines in mountainous area of northern Hebei, the content of available Cd and Pb were studied after adding combinations of lime, montmorillonite, biochar and zeolites with different amounts (0.5%, 1%, 3%, 5%) by a soil culture experiment in laboratory, aiming to screen a soil conditioner with good effect. The results indicated that the content of available Cd, available Pb and pH in the soil were changed by different kinds and amounts of soil conditioners. The content of available Cd and Pb in the soil decreased with the increase of soil conditioner. Meanwhile, the immobilization effect of combinations of materials on the available Cd and Pb in soil was better than that of single material. The combination of 20%-30% lime, 10%-20% montmorillonite, 40%-50% biochar and 0-30% zeolites had the best decreasing effect on the content of available Cd and Pb in the soil around mines in mountainous area of northern Hebei.
冀北山区 / 重金属污染 / 土壤调理剂 / 钝化修复 / 生物炭 {{custom_keyword}} /
Mountainous Area of Northern Hebei / Heavy Metal Pollution / Soil Conditioner / Immobilization / Biochar {{custom_keyword}} /
表1 4种双酰胺类杀虫剂对草地贪夜蛾卵的毒力 |
药剂 | 浓度/(mg/L) | 孵化率/% | 初孵幼虫存活率/% |
---|---|---|---|
氯虫苯甲酰胺 Chlorantraniliprole | 10 | 92.88aA | 10.03cD |
2 | 90.84aA | 17.16cCD | |
0.4 | 91.54aA | 30.24bBC | |
0.08 | 92.43aA | 43.70bB | |
0.016 | 91.08aA | 65.45aA | |
0 | 93.19aA | 74.72aA | |
氟苯虫酰胺 Flubendiamide | 10 | 91.33aA | 24.79eD |
2 | 92.29aA | 35.71dCD | |
0.4 | 91.48aA | 46.16cBC | |
0.08 | 90.67aA | 59.18bB | |
0.016 | 91.40aA | 72.72aA | |
0 | 93.25aA | 73.46aA | |
四氯虫酰胺 Tetrachlorantraniliprole | 10 | 91.53aA | 1.81dD |
2 | 90.94aA | 3.70dD | |
0.4 | 93.23aA | 19.05cC | |
0.08 | 92.27aA | 30.08cC | |
0.016 | 92.48aA | 49.49bB | |
0 | 92.38aA | 72.27aA | |
溴氰虫酰胺 Cyantraniliprole | 10 | 91.34aA | 21.72eD |
2 | 92.79aA | 39.58dC | |
0.4 | 93.05aA | 52.77cB | |
0.08 | 90.56aA | 62.11bAB | |
0.016 | 90.08aA | 69.50abA | |
0 | 92.48aA | 73.02aA |
表2 4种双酰胺类杀虫剂对草地贪夜蛾幼虫的毒力 |
药剂 | 调查时间/h | 斜率(±SE) | LC50(95%CL)/(mg/L) | R1 | R2 | R3 |
---|---|---|---|---|---|---|
氯虫苯甲酰胺Chlorantraniliprole | 24 | 0.41±0.04 | 1213.39(338.44~4350.33) | 3.57 | - | - |
48 | 0.29±0.03 | 10.83(5.02~23.39) | - | 5.22 | - | |
72 | 0.39±0.05 | 0.78(0.34~1.75) | - | - | 5.21 | |
氟苯虫酰胺Flubendiamide | 24 | 0.48±0.02 | 1123.86(666.78~1894.26) | 3.85 | - | - |
48 | 0.36±0.04 | 30.80(10.04~94.45) | - | 1.84 | - | |
72 | 0.48±0.01 | 1.81(1.54~2.13) | - | - | 2.24 | |
四氯虫酰胺Tetrachlorantraniliprole | 24 | 0.49±0.05 | 4327.27(974.57~19213.53) | 1.00 | - | - |
48 | 0.37±0.02 | 1.12(0.83~1.52) | - | 50.48 | - | |
72 | 0.48±0.07 | 0.12(0.04~0.34) | - | - | 33.83 | |
溴氰虫酰胺Cyantraniliprole | 24 | 0.60±0.04 | 402.63(194.04~835.44) | 10.75 | - | - |
48 | 0.58±0.03 | 56.54(30.71~104.10) | - | 1.00 | - | |
72 | 0.65±0.04 | 4.06(2.70~6.12) | - | - | 1.00 |
注:表中各药剂分别进行不同浓度间孵化率、初孵幼虫存活率方差分析 |
表3 4种双酰胺类杀虫剂对草地贪夜蛾成虫的毒力 |
药剂 | 斜率(±SE) | LC50(95%CL)/(mg/L) | R4 |
---|---|---|---|
氯虫苯甲酰胺 Chlorantraniliprole | 0.63±0.02 | 6.20(5.22~7.37) | 4.19 |
氟苯虫酰胺 Flubendiamide | 0.57±0.01 | 25.96(23.19~29.05) | 1.00 |
四氯虫酰胺 Tetrachlorantraniliprole | 0.61±0.03 | 6.28(4.15~9.52) | 4.13 |
溴氰虫酰胺 Cyantraniliprole | 0.60±0.01 | 20.75(18.49~23.29) | 1.25 |
[1] |
尹强舟, 高程, 胡晓斌. 矿区开发对环境的影响与评价方法[J]. 中国新技术新产品-生态环境与工程, 2018,1:140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019,38(10):2219-2238.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
黄煦, 胡克, 王建. “绿色矿山开发现状与问题”调查问卷结果分析[J]. 资源与产业, 2016,18(1):69-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 2019,36(3):253-263.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
徐婧婧, 赵科理, 叶正钱. 重金属污染土壤原位钝化修复材料的最新研究进展[J]. 环境污染与防治, 2019,41(7):852-855.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
徐慧婷, 张炜文, 沈旭阳, 等. 重金属污染土壤原位化学固定修复研究进展[J]. 湖北农业科学, 2019,58(1):10-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
黄家森, 牟海燕, 赖西聪, 等. 重金属污染土壤原位钝化技术研究进展[J]. 四川化工, 2018,21(2):9-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王确, 张今大, 陈哲晗, 等. 重金属污染土壤修复技术研究进展[J]. 能源环境保护, 2019,33(3):5-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015,24(12):2075-2081.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures >/=500 degrees C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (<0.25 and <1 mm) of biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P < 0.05) increased the pH, electrical conductivity, and cation exchange capacity of the soil, especially at the 5% application rate. Both bamboo and rice straw biochar significantly (P < 0.05) decreased the concentration of CaCl2-extractable heavy metals as biochar application rate increased. The heavy metal extractability was significantly (P < 0.01) correlated with pH, water-soluble organic carbon, and available phosphorus in soil. The 5% application rate of fine rice straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P < 0.05) increased catalase activity but had no significant impact on acid phosphatase activity. In conclusion, the rice straw biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
刘晶晶, 杨兴, 陆扣萍, 等. 生物炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015,35(11):3679-3687.
为了解土壤重金属形态转化及其有效性对生物质炭修复措施的响应,以Cd、Cu、Pb和Zn复合污染水稻土为供试土样,添加不同粒径(< 1 mm和< 0.25 mm)和不同施用量(0、1%和5%)的竹炭(BB)、稻草炭(RSB)进行为期1年的恒温((25 ± 1) ℃)培养试验后,检测土壤pH、有效磷含量及重金属DTPA有效态含量的变化,并采用BCR连续浸提法分析生物质炭对土壤中重金属元素化学形态再分配的影响.结果表明:稻草炭的施用显著(p<0.05)提高了土壤的pH值,且在RSB-5%(0.25 mm)处理下效果最显著;稻草炭的施用显著(p<0.05)提高了土壤的有效磷含量,且5%用量比1%用量效果更明显;而竹炭的施用对土壤pH值和有效磷含量均无显著性影响;RSB-5%(0.25 mm)处理对降低土壤中Cd、Cu、Pb和Zn有效态含量的效果最佳,分别减少了34.5%、50.1%、52.5%和52.1%;在细粒径(0.25 mm)稻草炭处理下,酸溶态Cd和Cu向可还原态和可氧化态转化,酸溶态Zn向可还原态转化;在粗粒径(1 mm)竹炭处理下,酸溶态Cu和Zn向可还原态、可氧化态和残渣态转化;酸溶态Pb在稻草炭处理下向可还原态和可氧化态转化,且细粒径比粗粒径效果更佳;竹炭和稻草炭的施用改变了土壤中上述重金属各形态的分配,且5%用量比1%用量效果更明显.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
陈泽雄, 朱凰榕, 周志军, 等. 改性蒙脱石修复镉污染对水稻根际土壤酶活性的影响[J]. 农业资源与环境学报, 2019,36(4):528-533.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016,25(8):1419-1424.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
谢运河, 纪雄辉, 黄涓, 等. 赤泥、石灰对Cd污染稻田改制玉米吸收积累Cd的影响[J]. 农业环境科学学报, 2014,33(11):2104-2110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
刘勇, 刘燕, 朱光旭, 等. 石灰对Cu、Cd、Pb、Zn复合污染土壤中重金属化学形态的影响[J]. 环境工程, 2019,37(2):158-164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
周江明, 姜正孝, 吴慧平. 撒施石灰对稻田及水稻重金属积累的影响[J]. 浙江农业科学, 2019,60(6):991-997.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张迪, 丁爱芳. 组配钝化剂对镉Pb复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018,37(12):2718-2726.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
朱俊, 高瑞丽, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016,36(1):251-256.
用生物炭修复重金属污染土壤已有广泛研究.本文采用水稻秸秆在500℃下制成的生物炭,施入Pb、Cd复合污染的土壤中培养30 d,探讨重金属化学形态变化,以期为生物炭修复重金属污染土壤提供科学依据.结果表明:生物炭添加后,黄棕壤的pH升高,弱酸提取态、可还原态及可氧化态Pb含量降低,残渣态Pb含量极显著增加,土壤Pb活性降低;与未加生物炭处理相比,添加生物炭后高浓度Cd污染土壤中弱酸提取态Cd含量极显著降低,可氧化态Cd含量增加,而残渣态Cd含量变化不显著,表明添加生物炭可以促进弱酸提取态Cd向可氧化态Cd转化.Pb、Cd复合污染土壤中Pb-Cd交互作用极显著,添加生物炭减弱了交互作用对弱酸提取态Pb的影响.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
曾燕君, 周志军, 赵秋香. 蒙脱石-OR-SH复合体材料对土壤镉的钝化和机制[J]. 环境科学, 2015,36(6):2314-2319.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
吴岩, 杜立宇, 梁成华, 等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报, 2018,32(1):286-290.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
杜彩艳, 王攀磊, 杜建磊. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究[J]. 生态环境学报, 2019,28(1):190-198.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
赵秋香, 黄晓纯, 李媛媛, 等. 蒙脱石-OR-SH复合体修复剂对重金属污染土壤中Cd的钝化效果[J]. 环境学报, 2014,33(11):1871-1877.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
袁启慧, 包立, 张乃明. 钝化剂种类和粒径对复合污染土壤镉铅有效态的影响[J]. 农业资源与环境学报, 2019,36(2):192-197.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学, 2017,38(1):361-367.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019,38(4):807-817.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学, 2015,36(1):309-313.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
谢飞, 梁成华, 孟庆欢, 等. 添加天然沸石和石灰对土壤锅形态转化的影响[J]. 环境工程学报, 2014,8(8):3505-3510.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
A 3-year pot experiment was carried out to investigate the efficiencies of hydroxyapatite (H), thiol-functionalized bentonite (T) and biochar (B) alone or in combination in remedying a Cd-Pb-contaminated soil. The application of passivating agents reduced the Cd and Pb mobility in acidic soil and enhanced soil microbial community function. The largest reductions in the Cd and Pb acid-soluble portions were observed under H (33.49%, 37.37%) and hydroxyapatite + thiol-functionalized bentonite + biochar (HTB, 36.70%, 37.31%), respectively. Biological analysis indicated that the AWCD (average well color development) of the B and HTB amendments was 1.42 and 1.51 times higher, respectively, than of untreated soil at 192 h. Moreover, the Shannon-Wiener, Simpson and Pielou indices were significantly increased in these two treatments relative to the values in the other amendment treatments. Therefore, combination amendments, such as HTB, which can reduce the bioavailability of both Cd and Pb and increase soil microbial activity, are recommended for practical applications.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |