植物扦插生根机理的研究进展

孙雪莲, 杨楚童, 胡亚楠, 邹显花

农学学报. 2021, 11(10): 33-40

PDF(1184 KB)
PDF(1184 KB)
农学学报 ›› 2021, Vol. 11 ›› Issue (10) : 33-40. DOI: 10.11923/j.issn.2095-4050.cjas2020-0016
农艺科学/生理生化

植物扦插生根机理的研究进展

作者信息 +

Rooting Mechanism of Plant Cuttings: A Review

Author information +
History +

摘要

扦插作为一种无性繁殖的重要技术被广泛应用于生产实践中,然而目前一些优良植物的扦插生根率低,制约着其扦插繁殖技术的长足发展,而探明植物的扦插生根调控机理是提高植物扦插生根率的关键。本文从插穗不定根发生的形态解剖学、生理学及分子学研究三方面对植物扦插生根机理的研究进行综述。结合国内外研究现状,从解剖学角度对不定根形成的进程和机理进行说明,分析了插穗内含物质与生根之间的关系,阐明了不定根形成和发育的关键分子调控机理。目前植物的扦插生根机理研究已从解剖学、生理学深入到分子学水平,基于分子生物学的发展趋势,提出利用基因工程手段提升植物扦插繁殖技术,以实现植物扦插繁殖的技术创新,提高繁殖数量和质量,适应发展需要。

Abstract

Cutting is widely used in production practice as an important technique of asexual reproduction. However, the low cutting rooting rate of some quality plants still restricts the rapid development of cutting propagation technology, and the key to improve the cutting rooting rate of plants is to find out the regulation mechanism. This article summarized the research on the mechanism of cutting rooting of plant from three aspects of morphology and anatomy, physiology and molecular biology during the adventitious root formation. Combined with the current research status at home and abroad, the process and mechanism of adventitious root formation were explained from the morphology and anatomy, the relationship between adventitious root formation and rooting was analyzed. The key molecular regulation mechanism of adventitious root formation and development was clarified. At present, the research on the rooting mechanism of plant cutting has gone deep into the molecular level from anatomy and physiology. Based on the development trend of molecular biology, it is proposed to use genetic engineering to improve the cutting propagation technology of plants, so as to achieve technological innovation, improve the quantity and quality of reproduction and adapt to the needs of production development.

关键词

扦插繁殖 / 生根机理 / 形态解剖学 / 内含物质 / 分子机理

Key words

Cutting Propagation / Rooting Mechanism / Morphology and Anatomy / Embedded Substance / Molecular Mechanism

引用本文

导出引用
孙雪莲 , 杨楚童 , 胡亚楠 , 邹显花. 植物扦插生根机理的研究进展. 农学学报. 2021, 11(10): 33-40 https://doi.org/10.11923/j.issn.2095-4050.cjas2020-0016
Sun Xuelian , Yang Chutong , Hu Ya'nan , Zou Xianhua. Rooting Mechanism of Plant Cuttings: A Review. Journal of Agriculture. 2021, 11(10): 33-40 https://doi.org/10.11923/j.issn.2095-4050.cjas2020-0016

参考文献

[1]
郭素娟. 林木扦插生根的解剖学及生理学研究进展[J]. 北京林业大学学报, 1997, 19(4):64-69.
[2]
周志刚, 刘果厚, 邱润生, 等. 珍稀濒危植物四合木嫩枝扦插生根特性的研究[J]. 内蒙古农业大学, 2011, 30(12):21-25,29.
[3]
魏礼文, 范红鹰. 影响难生根植物插条生根因素及解决措施[J]. 惠州大学学报:自然科学版, 1996, 16(4):63-66.
[4]
潘瑞炽, Rui-ChiPan.植物生长调节剂与扦插生根[J]. 植物学报, 1995, 12(专辑3):8-14.
[5]
洪汉辉, 康向阳, 汪晓峰. 年龄效应对白杨硬枝扦插苗生长及其茎皮部解剖结构和叶片生化指标的影响[J]. 西北植物学报, 2018, 38(2):274-281.
[6]
陈鸿鹰. 外源酚酸对欧美杨‘I-107’扦插苗细根形态建成和生理特性的影响[D]. 泰安:山东农业大学, 2017.
[7]
卓嘎, 杨小林, 辛福梅. 西藏2种红豆杉扦插生根过程及解剖结构研究[J]. 西部林业科学, 2015, 44(1):88-91.
[8]
李朝婵, 赵云龙, 张冬林, 等. 长蕊杜鹃扦插内源激素变化及解剖结构观察[J]. 林业科学研究, 2012, 25(3):360-365.
[9]
郭素娟, 凌宏勤, 李凤兰. 白皮松插穗生根的生理生化基础研究[J]. 北京林业大学学报, 2004, 26(2):43-47.
[10]
黄丽媛, 袁军, 周乃富, 等. 不同磷源处理对油茶扦插苗不定根发生及生理生化的影响[J]. 植物生理学报, 2016, 67(5):678-684.
[11]
刘玉民, 刘亚敏, 马明, 等. 马尾松扦插生根过程相关生理生化分析[J]. 林业科学, 2010, 46(9):28-33.
[12]
闫绍鹏. 欧美山杨杂种扦插生根的理化与分子机理研究[D]. 哈尔滨:东北林业大学, 2011.
[13]
杜伟. 桑树硬枝扦插生根的生理生化与分子机理研究[D]. 镇江:江苏科技大学, 2016.
[14]
Hatzilazarou S P, Syros T D, Yupsanis T A, et al. Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots[J]. Journal of Plant Physiology. 2006, 163(8):827-836.
In vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots with or without indolic-3-butyric acid (IBA) was studied in order to improve acclimatization of microplants after root formation and transplantation. Peroxidase (POD) activity and isoforms, lignin content and anatomical observations were evaluated in the course of the three interdependent phases (induction, initiation and expression) of microshoot rooting. Microshoots treated or not treated with IBA achieved high rooting percentages both in vitro and ex vitro. At the end of the 2-week acclimatization period, the percentage of surviving microplants ranged from 80% to 100%, for in vitro and ex vitro rooted microshoots, respectively. Microshoots rooted in vitro and ex vitro showed a relationship between rooting and POD activity but in a different time course. It appeared that root formation occurred after the microshoots had reached and passed a peak of maximum enzyme activity. In all treatments, electrophoretic analysis (native PAGE) of PODs revealed the appearance of one anionic and three cationic POD isoforms (C(1), C(3) and C(4)). An additional cationic POD isoform (C(2)) appeared only in the ex vitro rooting. The lignin content was similar in microshoots rooted both in vitro and ex vitro. The sequential anatomical changes during the rooting process were similar in both in vitro and ex vitro rooting treatments. In the case of in vitro rooting, pith cells had vacuoles entirely filled with a dark substance, while in the case of ex vitro rooting, pith cells contained many amyloplasts. The origin of the adventitious roots, in both rooting conditions, was located in the cambial ring. Roots with organized tissue systems emerged from the microshoot stem 10-14 days after the root induction treatments; on day 10 for rooting in vitro, while a 4-day delay was noted in microshoots rooted ex vitro.
[15]
Zhang W, Fan J, Tan Q, et al. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings[J]. Plos One, 2017, 12(2).
[16]
杜伟, 程嘉翎. 桑树绿枝扦插皮部生根过程的形态解剖学观察[J]. 蚕业科学, 2014, 40(1):13-17.
[17]
金建邦, 祝遵凌, 林庆梅. 欧洲鹅耳枥扦插生根及解剖特性[J]. 西北农林科技大学学报:自然科学版, 2015, 43(2):92-98.
[18]
杜伟. 人工诱导桑树绿枝扦插皮孔生根机理的研究[J]. 江苏科技大学, 2010.
[19]
谭健晖. 桉树嫩枝扦插繁殖的研究进展及对策[J]. 广西林业科学, 2003, 33(2):74-76.
[20]
林建, 陈培, 莫光武, 等. 桉树的枝条扦插繁殖技术研究[J]. 热带林业, 2007, 35(2):23-29.
[21]
朱聃, 吕凤霞, 陶洪波, 等. 矮丛越橘扦插生根的形态解剖学研究[J]. 东北农业大学学报, 2011, 42(7):143-146.
[22]
周祥明, 刘玉堂, 赵宪争, 宋兆伟, 王姝. 合欢硬枝扦插生根解剖及相关酶活性变化研究[J]. 植物研究, 2016, 36(1):58-61.
[23]
张颖. 秤锤树扦插繁殖技术及生根机理的研究[D]. 南京:南京林业大学, 2009.
[24]
徐佩贤. 东方杉嫩枝扦插繁殖技术及其生根机理研究[D]. 南京:南京林业大学, 2009.
[25]
周容涛, 刘洋, 冷珊珊, 等. 欧美杂种山杨微扦插不定根发生过程的解剖学研究[J]. 西北植物学报, 2013, 33(11):2184-2188.
[26]
金建邦, 祝遵凌, 林庆梅. 欧洲鹅耳枥扦插生根及解剖特性[J]. 西北农林科技大学学报:自然科学版, 2015, 43(2):92-98.
[27]
林如, 曹玉芳, 胡正海. 绞股蓝扦插生根的解剖学研究[J]. 福建农业大学学报, 2003, 32(4):464-467.
[28]
张晓平, 方炎明. 杂种鹅掌楸插穗不定根发生与发育的解剖学观察[J]. 植物资源与环境学报, 2003, 12(1):10-15.
[29]
许晓岗. 垂丝海棠、楸子的扦插生根机理研究[D]. 南京:南京林业大学, 2006.
[30]
付红祥. 海棠的繁殖技术研究[D]. 南京:南京林业大学, 2004.
[31]
李春燕, 杨廷桢, 高敬东, 等. 苹果矮化砧扦插生根解剖学机理研究进展[J]. 山西农业科学, 2017, 45(10):1719-1720.
[32]
谢志南, 赖瑞云, 林丽仙, 等. 三角梅插穗扦插生根过程解剖学观察[J]. 闽西职业技术学院学报, 2008, 10(3):97-99.
[33]
姚景瀚, 李伟. 沙棘微扦插不定根发生的形态解剖学研究[J]. 北京林业大学学报, 2013, 35(2):130-133.
[34]
Meng Z, Tang H R, Dan W, et al. Studies on rooting characteristics and anatomical structure of feijoa cuttings[J]. Journal of Fruit Science, 2009, 99(2):86-90.
[35]
郑健, 郑勇奇, 吴超. 花楸树嫩枝扦插繁殖技术研究[J]. 林业科学研究, 2009, 22(1):91-97.
[36]
刘云强, 杨建民, 彭伟秀, 等. 两种椴树嫩枝扦插生根的解剖学研究[J]. 河北农业大学学报, 2004(2):33-37.
[37]
丘醒球, 余倩珠, 张少翃, 等. 桉树插条生根解剖研究[J]. 林业科学研究, 1995, 8(2):170-176.
[38]
廖德志, 李志辉, 吴际友, 等. 台湾桤木无性系扦插繁殖试验[J]. 湖南林业科技, 2010, 37(6):48-51.
[39]
Porfírio S, Silva M D R G, Cabrita M J, et al. Reviewing current knowledge on olive (Olea europaea L.) adventitious root formation[J]. Scientia Horticulturae, 2016, 198(5):207-226.
[40]
刘卫东, 万朝琨, 饶龙兵, 等. 桉树扦插生根的解剖学研究[J]. 中南林学院学报, 1997, 3(4):32-36.
[41]
鲁丹, 张瑞, 彭方仁, 等. 红桤木扦插繁殖技术及生根过程的解剖学观察[J]. 西南林业大学学报, 2013, 33(2):24-28.
[42]
柯益富, 彭克宇, 曹梦罴 .鸡桑 (MorusaustralisCattingLype)枝条解剖构造与扦插发根机制的研究[J]. 西南大学学报:自然科学版, 1992, 36(3):278-282.
[43]
洪汉辉, 康向阳, 汪晓峰. 年龄效应对白杨硬枝扦插苗生长及其茎皮部解剖结构和叶片生化指标的影响[J]. 西北植物学报, 2018, 39(2):274-281.
[44]
王戈戎, 袁晓颖. 喜树茎解剖构造及插条不定根的形成[J]. 东北林业大学学报, 2007, 51(3):88-89.
[45]
赵今哲, 刘国彬, 张鸿翎, 等. 生长调节剂处理的洒金柏扦插不定根解剖学研究[J]. 西南林业大学学报:自然科学, 2019, 39(2):173-178.
[46]
郭英超, 杜克久, 贾哲. 兴安圆柏扦插生根过程中相关内源激素特征分析[J]. 中国农学通报, 2012, 29(1):44-48.
[47]
张晓平, 方炎明, 黄绍辉. 杂种鹅掌楸扦插生根过程中内源激素的变化[J]. 南京林业大学学报:自然科学版, 2004, 47(3):79-82.
[48]
张往祥, 宋元超, 赵明明, 等. 金雀花扦插生根过程中内源激素动态变化[J]. 林业科技开发, 2014, 28(5):61-64.
[49]
吴文浩, 曹凡, 刘壮壮, 等. NAA对薄壳山核桃扦插生根过程中内源激素含量变化的影响[J]. 南京林业大学学报:自然科学版, 2016, 59(5):191-196.
[50]
敖红, 王崑, 冯玉龙. 长白落叶松插穗的内源激素水平及其与扦插生根的关系[J]. 植物研究, 2002, 44(2):190-195.
[51]
曹凡, 彭方仁, 梁有旺, 等. 美国山核桃不定根形成过程中相关蛋白质的鉴定及功能分析[J]. 南京林业大学学报:自然科学, 2016, 40(2):53-58.
[52]
张锦春, 刘有军, 王方琳, 等. 沙生柽柳扦插生根过程插穗相关理化特征分析[J]. 西北植物学报, 2018, 38(3):484-492.
[53]
姚锐. 北美香柏扦插繁殖技术及其生根生理生化机理的研究[D]. 长沙:中南林业科技大学, 2017.
[54]
王雪娇. 蓝莓组培苗扦插繁殖技术与生根机理的研究[D]. 哈尔滨:东北农业大学, 2016.
[55]
张乐华, 王书胜, 单文, 等. 基质、激素种类及其浓度对鹿角杜鹃扦插育苗的影响[J]. 林业科学, 2014, 50(3):45-54.
[56]
李永欣, 曾慧杰, 王晓明, 等. 光皮树扦插过程中内源激素变化[J]. 中国农学通报, 2010, 26(15):247-251.
[57]
张金浩. 裸花紫珠扦插繁殖技术及生根机理研究[D]. 北京:中国林业科学研究院, 2014.
[58]
麻文俊, 张守攻, 王军辉, 等. 日本落叶松扦插生根期内源激素和营养物质及酚酸含量变化特征[J]. 西北植物学报, 2013, 33(1):109-115.
[59]
詹亚光, 杨传平, 金贞福, 等. 白桦插穗生根的内源激素和营养物质[J]. 东北林业大学学报, 2001, 29(4):1-4.
[60]
Correa L D, Paim D C, Schwambach J, et al. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill[J]. Plant growth regulation, 2005, 45(1):63-73.
[61]
魏海蓉, 陈新, 宗晓娟, 等. 甜樱桃矮化砧‘吉塞拉6号’扦插过程中氧化酶活性和碳氮含量变化[J]. 林业科学, 2013, 49(9):172-177.
[62]
吕明霞. 梅花扦插繁殖技术的研究[J]. 江西林业科技, 2000, 20(2):43-45.
[63]
Druege U, Zerche S, Kadner R. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light[J]. Annals of Botany, 2004, 94(6):831-842.
The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses.Carbohydrate partitioning in high-light-adapted cuttings of the cultivar 'Isabell' was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined.Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes.The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate availability that depends on the initial leaf sugar levels, when high-light adaptation and low current light conditions impair net carbon assimilation.
[64]
唐玲, 王艳芳, 李荣英, 等. 插穗规格与遮荫度对肾茶扦插苗质量的影响[J]. 中药材, 2017, 40(2):281-283.
[65]
罗坤水, 罗忠生, 叶金山, 等. 珍稀树种沉水樟嫩枝扦插技术研究[J]. 南方林业科学, 2016, 44(5):21-23,34.
[66]
Haissig B E. Origins of adventitious roots[J]. New Zealand Journal of Forestry Science, 1974, 4(2):299-310.
[67]
王新建, 何威, 张秋娟, 等. 豫楸1号扦插生根过程中营养物质含量及氧化酶类活性的变化[J]. 林业科学, 2009, 45(4):156-161.
[68]
刘曼. 棱角山矾扦插繁殖技术及其生根机理研究[D]. 南京:南京林业大学, 2010.
[69]
师晨娟, 刘勇, 王春城, 等. 青海云杉扦插的年龄效应及其生根机理研究[J]. 西北农林科技大学学报:自然科学版, 2006, 34(12):101-104.
[70]
张雪, 李隆云, 杨宪. 灰毡毛忍冬扦插繁殖过程中营养物质含量的变化研究[J]. 中国中药杂志, 2010, 34(1):1378-1381
[71]
Dash G K, Senapati S K, Rout G R. Effect of auxins on adventitious root development from nodal cuttings of Saraca asoka (Roxb.) de Wilde and associated biochemical changes[J]. Journal of Horticulture & Forestry, 2011.
[72]
Husen A. Changes of Soluble Sugars and Enzymatic Activities During Adventitious Rooting in Cuttings of Grewia optiva as Affected by Age of Donor Plants and Auxin Treatments[J]. American Journal of Plant Physiology, 2012, 7(1):1-16.
[73]
赵云龙, 陈训, 李朝婵. 糙叶杜鹃扦插生根过程中生理生化分析[J]. 林业科学, 2013, 49(6):45-51.
[74]
刘玉艳, 于凤鸣, 韩淑丽. 影响木槿硬枝扦插若干生理指标的研究[J]. 林业科技, 2002, 27(5):4-7.
[75]
宋金耀, 刘永军, 宋刚, 等. 几个常见树种扦插生根过程中POD、IAAO活性及酚含量的变化[J]. 江苏农业科学, 2007, 35(6):115-118.
[76]
Satisha J, Raveendran P, Rokade N D. Changes in polyphenol oxidase activity during rooting of hardwood cuttings in three grape rootstocks under Indian conditions.[J]. South African Journal for Enology & Viticulture, 2008, 29(2):94-97.
[77]
闫绍鹏, 武晓东, 王秋玉, 等. 欧美山杨杂种嫩枝微扦插生根相关氧化酶活性变化及繁殖技术[J]. 东北林业大学学报, 2011, 39(11):5-7,11.
[78]
孟庆伟, 高辉远. 植物生理学[M]. 北京: 中国农业出版社, 2011.
[79]
侯江涛, 沈聪聪, 张毅芳, 凌娜. 植物扦插繁殖生根机理研究综述[J]. 安徽农业科学, 2019, 47(19):1-3,6.
[80]
言倜信. 南酸枣扦插繁殖技术与生理机理研究[D]. 长沙:中南林业科技大学, 2015.
[81]
姚瑞玲, 王胤, 项东云, 等. 邓恩桉插条生根抑制物质鉴定[J]. 福建林学院学报, 2010, 30(3):275-278.
[82]
李永进, 丁贵杰. 不同家系马尾松插穗内源生根抑制物的分离、纯化及鉴定[J]. 浙江林学院学报, 2010, 27(4):507-512.
[83]
程广有. 紫杉插穗中生根抑制物的鉴定[J]. 北华大学学报:自然科学版, 2000, 1(2):163-166.
[84]
朱鹏, 徐建民. 邓恩桉组织材料生根抑制物研究[J]. 安徽农业科学, 2007, 47(32):10236-10238,10560.
[85]
王芳, 谢健, 王泽, 等. 梭梭枝条生根抑制物研究[J]. 西北农业学报, 2016, 25(1):136-141.
[86]
王志敏. 五个圆柏品种扦插繁殖技术与生根机理研究[D]. 呼和浩特:内蒙古农业大学, 2019.
[87]
Gray W M, Del Pozo J C, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana[J]. Genes Dev, 1999, 13(13):1678-1691.
[88]
Hobbie L, Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation[J]. Plant Journal, 2010, 7(2):211-220.
[89]
Rigas S, Debrosses G, Haralampidis K, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs[J]. Plant Cell, 2001, 13(1):139-152.
Root hair initiation involves the formation of a bulge at the basal end of the trichoblast by localized diffuse growth. Tip growth occurs subsequently at this initiation site and is accompanied by the establishment of a polarized cytoplasmic organization. Arabidopsis plants homozygous for a complete loss-of-function tiny root hair 1 (trh1) mutation were generated by means of the T-DNA-tagging method. Trichoblasts of trh1 plants form initiation sites but fail to undergo tip growth. A predicted primary structure of TRH1 indicates that it belongs to the AtKT/AtKUP/HAK K(+) transporter family. The proposed function of TRH1 as a K(+) transporter was confirmed in (86)Rb uptake experiments, which demonstrated that trh1 plants are partially impaired in K(+) transport. In line with these results, TRH1 was able to complement the trk1 potassium transporter mutant of Saccharomyces, which is defective in high-affinity K(+) uptake. Surprisingly, the trh1 phenotype was not restored when mutant seedlings were grown at high external potassium concentrations. These data demonstrate that TRH1 mediates K(+) transport in Arabidopsis roots and is responsible for specific K(+) translocation, which is essential for root hair elongation.
[90]
Schneider K, Mathur J, Boudonck K, et al. The ROOT HAIRLESS 1 gene encodes a nuclear protein required for root hair initiation in Arabidopsis[J]. Genes & Development, 1998, 12(13):2013.
[91]
Quan J, Zhang S, Zhang C, et al. Molecular Cloning, Characterization and Expression Analysis of the SAMS Gene during Adventitious Root Development in IBA-Induced Tetraploid Black Locust[J], Plos One. 2014, 9(10):e108709.
[92]
Xing H, Pudake R N, Guo G, et al. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize[J]. Bmc Genmics, 2011, 12(178).
[93]
Dalila T, Yordan Y, Sharon R, et al. Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus[J]. Planta, 2013, 238(2):271-282.
[94]
Rigal A, Yordanov Y S, Perrone I, et al. The AINTEGUMENTA LIKE1 Homeotic Transcription Factor PtAIL1 Controls the Formation of Adventitious Root Primordia in Poplar[J]. Plant Physiology, 2012, 160(4):1996-2006.
[95]
Pacurar D I, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting[J]. Physiol Plant, 2014, 151(1):83-96.
Vegetative propagation of economically important woody, horticultural and agricultural species rely on an efficient adventitious root (AR) formation. The formation of ARs is a complex genetic trait regulated by the interaction of environmental and endogenous factors among which the phytohormone auxin plays an essential role. This article summarizes the current knowledge related to the intricate network through which auxin controls adventitious rooting. How auxin and recently identified auxin-related compounds affect AR formation in different plant species is discussed. Particular attention is addressed to illustrate how auxin has a central role in the hormone cross-talk leading to AR development. In parallel, we describe the molecular players involved in the control of auxin homeostasis, transport and signaling, for a better understanding of the auxin action during adventitious rooting. © 2014 Scandinavian Plant Physiology Society.
[96]
Vieten A, Sauer Mbrewer P B, Friml J. Molecular and cellular aspects of auxin-transport-mediated development[J]. Trends in Plant Science, 2007, 12(4):160-168.
The plant hormone auxin is frequently observed to be asymmetrically distributed across adjacent cells during crucial stages of growth and development. These auxin gradients depend on polar transport and regulate a wide variety of processes, including embryogenesis, organogenesis, vascular tissue differentiation, root meristem maintenance and tropic growth. Auxin can mediate such a perplexing array of developmental processes by acting as a general trigger for the change in developmental program in cells where it accumulates and by providing vectorial information to the tissues by its polar intercellular flow. In recent years, a wealth of molecular data on the mechanism of auxin transport and its regulation has been generated, providing significant insights into the action of this versatile coordinative signal.
[97]
Li Y H, Zou M H, Feng B H, et al. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments[J]. Plant Physiology & Biochemistry, 2012, 55(2):33-42.
[98]
Thomas P, Lee M M, Schiefelbein J. Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings[J]. Plant Cell & Environment, 2010, 26(9):1497-1504.
[99]
胡春华, 谢玉明, 黄训才, 等. 转rolABC基因枳橙快繁技术[J]. 果树学报, 2006, 23(1):142-144.
[100]
Rugini E, Pellegrineschi A, Mencuccini M, et al. Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes[J]. Plant Cell Reports, 1991, 10(6-7):291-295.
The woody species kiwi (Actinidia deliciosa A. Chev.), a male and late flowering clone of the cv Hayward, has been transformed by a T-DNA fragment encompassing rol A, B, C genes of A. rhizogenes. Transgenic plants, regenerated from leaf disc callus, showed the typical "hairy root" phenotype as described in herbaceous species. Explants from these plants (both leaf discs or 3 to 4 node leafy microcuttings) showed an increased ability to produce roots. Since root formation is one of the limiting factors in the vegetative propagation of woody species, the results have been discussed in relation to the use of A. rhizogenes rol genes in improving root morphogenesis in trees.
[101]
Salm T P M V, Toorn C J G V, Bouwer R, et al. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability[J]. Molecular Breeding, 1997, 3(1):39-47.
[102]
Chen H, Zhao Y, Xu Z H. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity[J]. Plant Physiology, 2004, 135(3):1502-1513.
[103]
Kristinna Himanen, Elodie Boucheron, Steffen Vanneste, et al. Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation[J]. The Plant Cell, 2002, 14(10):2339-2351.
[104]
Steffen Vanneste, Lies Maes, Ive De Smet, et al. Auxin regulation of cell cycle and its role during lateral root initiation[J]. Physiologia Plantarum, 2005, 123(2):139-146.
[105]
Laskowski M J, Williams M E, Nusbaum H C, et al. Formation of lateral root meristems is a two-stage process[J]. Development, 1995, 121(10):3303-3310.
In both radish and Arabidopsis, lateral root initiation involves a series of rapid divisions in pericycle cells located on the xylem radius of the root. In Arabidopsis, the number of pericycle cells that divide to form a primordium was estimated to be about 11. To determine the stage at which primordia are able to function as root meristems, primordia of different stages were excised and cultured without added hormones. Under these conditions, primordia that consist of 2 cell layers fail to develop while primordia that consist of at least 3-5 cell layers develop as lateral roots. We hypothesize that meristem formation is a two-step process involving an initial period during which a population of rapidly dividing, approximately isodiametric cells that constitutes the primordium is formed, and a subsequent stage during which meristem organization takes place within the primordium.
[106]
Lieven De Veylder, Gerrit T S. Beemster, Tom Beeckman, et al. CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell‐cycle progression[J]. The Plant Journal, 2001, 25(6):617-626.

基金

福建省林业科学技术推广项目“珍贵树种沉水樟的无性繁殖生根机理研究”(闽林推[2016]SJ15号)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1184 KB)

Accesses

Citation

Detail

段落导航
相关文章

/