
鄂伦春旗耕地土壤有机质含量的时空变化趋势及其与大豆产量的关系
Temporal-Spatial Distribution of Arable Soil Organic Matter in Oroqen Banner and Its Relationship with Soybean Yield
为全面分析鄂伦春旗土壤有机质含量随着时间推移发生的变化及在空间上的分布情况,比较该区域不同土壤类型有机质含量的差异,探讨土壤有机质和全氮含量之间的关系,对2008—2014年在鄂伦春旗域内均匀采集的7722个耕地土壤样品进行土壤类型判别及有机质、全氮含量测定,并与1986年全国第二次土壤普查数据进行对比,同时通过盆栽试验研究土壤有机质含量及施肥水平对大豆农艺性状和产量的影响。分别采用油浴加热重铬酸钾容量法和半微量凯氏定氮法测定土壤有机质含量和全氮含量。通过相同区域近30年间有机质、全氮含量的比较分析鄂伦春旗土壤肥力变化动态。盆栽试验供试品种为‘北豆26’,设置23.24、41.45、60.21、81.37、98.71 g/kg等5个土壤有机质含量水平,在大豆开花期、成熟期分别记载发育进度和农艺性状,收获后考种获得产量性状数据。近30年来,鄂伦春旗耕层土壤有机质含量平均由127.24 g/kg下降到64.82 g/kg,降幅达49.06%。对不同土壤类型有机质含量变化进行分析,发现沼泽土有机质含量由165.9 g/kg下降到67.89 g/kg,降幅为59.08%;暗棕壤由120.9 g/kg下降到63.83 g/kg,降幅为47.20%;棕色针叶林土由149.2 g/kg下降到103.79 g/kg,降幅为30.44%;草甸土由111.5 g/kg下降到66.61 g/kg,降幅为40.26%;黑土由88.7 g/kg下降到65.63 g/kg,降幅为26.01%。土壤有机质与全氮含量显著正相关。施用化肥对大豆的增产效果因土壤有机质含量而异,当土壤有机质含量高于81.37 g/kg时,化肥对大豆的增产作用效果不明显。鄂伦春旗耕层土壤有机质含量下降49.06%,表明缺少有效土壤培肥措施的耕种对土壤有机质消耗极大。不同土类有机质平均含量随耕作年限的延长而下降的幅度存在明显差异,其中沼泽土降幅最大,黑土降幅较小,暗棕壤居中。土壤有机质含量丰富的土壤,即使不施用化肥,也能获得较高产量。因此,提高有机质含量是提高土壤生产能力和农业生产效益的根本性措施。作者认为,轮作倒茬和秸秆还田是最重要的土壤培肥措施。
To study the spatial and temporal dynamic of soil organic matter content of different soil types in Oroqen and the relationships between organic matter content and total N content, the soil organic matter and total nitrogen content of 7722 soil samples collected in Oroqen Banner in 2008-2014 were analyzed and compared with the results of local soil samples taken during The Second National Soil Census in 1986. Furthermore, a pot experiment with different soil organic matter contents was conducted to determine the effects of soil organic content on botanical characteristics, agronomic traits and yield of soybean. The content of soil organic matter and total N were determined by oil bath heating potassium dichromate volumetric method and semi-micro Kjeldahl method, respectively. There were five levels for soil organic matter content (23.24, 41.45, 60.21, 81.37, 98.71 g/kg), and two fertilizing levels (fertilizer application and no fertilizer) in the pot experiment and soybean cultivar ‘Beidou 26’ was used as material. Developmental rate and agronomic traits were investigated at flowering and maturity stage, and yield measurements were taken after harvest. The soil organic matter content of arable layer in Oroqen Banner was significantly decreased by 49.06% from 127.24 to 64.82 g/kg in recent 30 years. The changes of organic matter content in different soil types were analyzed: organic matter content of swamp soil significantly decreased by 59.08% from 165.9 to 67.89 g/kg; organic matter content of dark brown soil significantly decreased by 47.20% from 120.9 to 63.83 g/kg; organic matter content of brown forest soil significantly decreased by 30.44% from 149.2 to 103.79 g/kg; organic matter content of meadow soil significantly decreased by 40.26% from 111.5 to 66.61 g/kg; organic matter content of black soil significantly decreased by 26.01% from 88.7 to 65.63 g/kg. Soil organic matter and total nitrogen content showed an obvious positive correlation. The effects of chemical fertilizer application on soybean seed yield were dependent on the soil organic matter content and no increasing effects were found after the soil organic matter content reached 81.37 g/kg. Soil organic matter in Oroqen Banner decreased by 49.06%, showing that unsustainable farming consumed a lot of soil organic matter. Significant differences of organic matter changes over years were found among the soil types, i.e. swampy soil had the largest decrease, while black soil had the smallest decrease and the dark brown soil was in the middle. Soil rich of organic matter, even without chemical fertilizer application, can also produce a higher yield of soybean. Therefore, enriching the organic matter content is the fundamental measure to improve the soil productivity and agricultural production efficiency. The authors suggest that crop rotation and straw returning are the most important measures for elevating soil organic matter.
鄂伦春旗 / 土壤有机质 / 时空分布 / 大豆 / 产量 {{custom_keyword}} /
Oroqen Banner / Organic Matter / Spatio-temporal Distribution / Soybean / Yield {{custom_keyword}} /
表1 鄂伦春旗不同区域土壤有机质含量 |
乡镇及方位 | 项目 | >60 g/kg | 45~60 g/kg | 30~45 g/kg | 15~30 g/kg | <15 g/kg | 平均值/(g/kg) | 变幅/(g/kg) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
阿里河镇西北部 | 面积/hm2 | 2308.18 | 635.96 | 0.00 | 0.00 | 0.00 | 71.34±15.93 | 38.8~123.3 | |||
比例/% | 78.40 | 21.60 | 0.00 | 0.00 | 0.00 | ||||||
大杨树镇东南部 | 面积/hm2 | 39156.37 | 11838.60 | 1195.13 | 12.58 | 0.00 | 63.90±18.34 | 16.0~125.2 | |||
比例/% | 75.01 | 22.68 | 2.29 | 0.02 | 0.00 | ||||||
甘河镇西北部 | 面积/hm2 | 1158.05 | 0.00 | 0.00 | 0.00 | 0.00 | 89.25±5.72 | 80.8~94.9 | |||
比例/% | 100 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
古里乡东南部 | 面积/hm2 | 51730.79 | 2891.68 | 92.86 | 7.43 | 0.00 | 75.52±19.75 | 24.2~129.9 | |||
比例/% | 94.5 | 5.28 | 0.17 | 0.08 | 0.00 | ||||||
克一河镇西北部 | 面积/hm2 | 1640.42 | 0.00 | 0.00 | 0.00 | 0.00 | 96.51±22.96 | 60.0~132.4 | |||
比例/% | 100 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
诺敏镇西南部 | 面积/hm2 | 21915.02 | 11429.89 | 3023.85 | 7.78 | 0.00 | 60.04±19.97 | 20.5~127.2 | |||
比例/% | 60.24 | 31.42 | 8.31 | 0.02 | 0.00 | ||||||
吉文镇西北部 | 面积/hm2 | 7205.35 | 107.72 | 0.00 | 0.00 | 0.00 | 80.82±24.97 | 47.4~127.8 | |||
比例/% | 98.53 | 1.47 | 0.00 | 0.00 | 0.00 | ||||||
托扎敏乡西北部 | 面积/hm2 | 757.25 | 0.00 | 0.00 | 0.00 | 0.00 | 78.50±16.39 | 44.7~124.9 | |||
比例/% | 100 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
乌鲁布铁镇东南部 | 面积/hm2 | 34863.77 | 14123.90 | 1157.78 | 23.05 | 0.00 | 66.51±18.87 | 17.5~132.3 | |||
比例/% | 69.49 | 28.15 | 2.31 | 0.05 | 0.00 | ||||||
宜里镇东南部 | 面积/hm2 | 41103.44 | 22478.03 | 4422.17 | 46.31 | 0.00 | 61.03±19.21 | 15.8~127.2 | |||
比例/% | 60.40 | 33.03 | 8.17 | 0.07 | 0.00 | ||||||
全旗 | 面积/hm2 | 201838.64 | 63505.78 | 9891.79 | 97.15 | 0.00 | 64.82±19.42 | 15.8~132.4 | |||
比例/% | 73.32 | 23.06 | 3.58 | 0.04 | 0.00 |
表2 鄂伦春旗不同土壤类型有机质分级面积和比例 |
土壤类型 | 项目 | >60 g/kg | 45~60 g/kg | 30~45 g/kg | 15~30 g/kg | <15 g/kg | 平均数 g/kg |
---|---|---|---|---|---|---|---|
暗棕壤 | 面积/hm2 | 101610.21 | 36623.89 | 5816.25 | 63.58 | 0.00 | 63.83±18.92 |
比例/% | 70.51 | 25.41 | 4.04 | 0.04 | 0.00 | ||
草甸土 | 面积/hm2 | 22536.99 | 7046.34 | 1763.71 | 22.81 | 0.00 | 66.61±19.25 |
比例/% | 71.84 | 22.46 | 5.62 | 0.07 | 0.00 | ||
黑土 | 面积/hm2 | 48823.60 | 13354.73 | 1334.98 | 7.43 | 0.00 | 65.63±18.80 |
比例/% | 76.86 | 21.02 | 2.10 | 0.01 | 0.00 | ||
沼泽土 | 面积/hm2 | 28804.65 | 6431.00 | 940.85 | 3.35 | 0.00 | 67.89±22.94 |
比例/% | 79.62 | 17.78 | 2.60 | 0.01 | 0.00 | ||
棕色针叶林土 | 面积/hm2 | 8.58 | 0.00 | 0.00 | 0.00 | 0.00 | 103.79±20.78 |
比例/% | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
全旗 | 面积/hm2 | 201784.3 | 63455.96 | 9855.79 | 97.17 | 0.00 | 64.82±19.42 |
比例/% | 73.32 | 23.06 | 3.58 | 0.04 | 0.00 |
[1] |
Understanding the changes in soil potassium (K) and crop yield under K fertilization and straw return is important for proper K fertilizer management. A field experiment involving a wheat (Triticum aestivum L.)-maize (Zea mays L) rotation was conducted to study the effects of long-term (20-year) K fertilization and straw return on soil K and crop yield in north-central China. Fertilization treatments included: nitrogen and phosphorus fertilizers (NP), NP plus wheat straw (NPS), NP and K fertilizers (NPK), and NPK plus wheat straw (NPKS). Annual soil K budget increased with increasing K inputs (including fertilizer K and straw K) in the order of NP< NPS < NPK< NPKS, and further increased after maize straw returned since 2008. The NP and NPS treatments decreased soil available K and slowly available K below the initial levels, K fertilization and/or straw return increased available K and slowly available Kin the top 30 cm soil over the NP treatment. Fertilization did not significantly alter total K in the 0-100 cm depths, but in the 0-10 cm soil layer, the NP, NPS, and NPK treatments decreased total K by 4.3%, 3.4%, and 0.4% than the initial concentration, respectively. Compared with the NP treatment, K fertilization and/or straw return increased crop yields in most cases, and the effect of K inputs on yield increase was greater for maize than wheat. Additionally, increased straw return enhanced soil organic carbon (SOC) beyond the NP treatment, and SOC decreased with depths between 0 and 40 cm soil; however, fertilization did not change SOC below 40 cm. In conclusion, K fertilization and/or straw return alleviated soil K depletion and increased soil K fertility; crop yields increased with increasing K inputs, and yield response of maize to K fertilization was greater than wheat. (C) 2014 Elsevier B.V.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
韩晓增, 王凤仙, 王凤菊, 等. 长期施用有机肥对黑土肥力及作物产量的影响[J]. 干旱地区农业研究, 2010,28(1):66-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
杨学明, 张晓平, 方华军, 等. 20年来部分黑土耕层有机质和全氮含量的变化[J]. 地理科学, 2004,24(6):710-714.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
康日峰, 任意, 吴会军, 等. 26年来东北黑土区土壤养分演变特征[J]. 中国农业科学, 2016,49(11):2113-2125.
【目的】东北黑土区土壤肥沃,是中国重要的粮食主产区之一。对东北黑土区20世纪80年代以来国家级耕地质量长期监测数据进行整理和分析,以明确中国东北黑土区农业生产实践中土壤养分状况和肥力水平,为农田土壤培肥提供科学指导依据。【方法】利用时间趋势分析法探讨17个国家级黑土耕地质量长期监测点26年来土壤养分随时间的变化趋势,分别总结土壤有机质(SOM)、全氮(TN)、碱解氮(AN)、有效磷(AP)和速效钾(AK)含量在监测初期(1988—1997年)、监测中期(1998—2003年)和监测后期(2004—2013年)的变化规律及其总体变化趋势;在分析土壤全氮和有机碳含量变化特征以及碳氮比(C/N)演变规律的基础上,进一步分析碳和氮之间的养分平衡关系;运用主成分分析方法分析不同监测时期上述5大肥力指标对黑土区土壤综合肥力的影响,得出该区综合肥力主要贡献因子,并分别计算3个不同监测时期黑土区土壤综合肥力属性得分。【结果】黑土区农田土壤经过10—26年的演变,土壤有机质、全氮、碱解氮、有效磷、速效钾含量整体呈上升趋势。与监测初期相比,监测后期土壤养分含量均显著提高(P<0.05),土壤有机质、全氮、碱解氮、有效磷和速效钾分别提高了33.9%、43.9%、27.6%、90.3%和11.8%,有效磷提升效果最为显著。进一步分析土壤有效磷含量发现,监测后期71.4%的监测点土壤有效磷含量维持在15.0—50.0 mg·kg-1,既能满足作物生长需求,又不至于引发地下水环境污染,而28.6%的监测点土壤有效磷含量已超过50.0 mg·kg-1的环境阈值,应及时控制磷素的输入。分析主要肥力因素有机碳和全氮之间的关系表明,黑土区土壤C/N略有下降趋势,从1988年的10.3降至2013年的9.6,下降了6.8%。黑土区5个肥力指标得分系数由大到小的顺序为:SOM>TN>AN>AP>AK,说明黑土区土壤有机质和全氮是影响土壤综合肥力的关键因素;监测初期和监测中期土壤综合肥力属性得分平均值分别为-1.099和-0.541,而监测后期土壤综合肥力属性的得分增加到了0.5888,监测后期土壤综合肥力得到显著提升。【结论】在农民常规施肥条件下,经过10—26年的长期耕作,黑土区土壤肥力在监测后期得到显著改善,但28.6%的监测点应注意控制磷肥用量,以免引起水体污染;而监测区黑土C/N呈逐年下降趋势,应该加大有机物料的投入,以维持土壤碳氮的养分平衡。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张迪, 韩晓增. 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响[J]. 中国农业科学, 2010,43(13):2715-2723.
【目的】阐明长期不同植被覆盖与施肥管理后,同一地块的黑土的总有机碳(TOC)、活性有机碳的变化。探讨黑土可持续利用的土地管理模式。【方法】第一个田间试验开始于1985年,研究不同植被覆盖(裸地、草地、耕地)下的黑土活性有机碳的含量和分布变化。第二个田间试验开始于1993年,研究了不同施肥处理(无肥对照(CK)、氮磷(NP)、氮磷配施有机肥(NPOM))对活性有机碳变化的影响。【结果】不同植被凋落物和根系分泌物及长期不同施肥管理均对黑土活性有机碳的形成产生明显的影响。与1985年相比,裸地TOC和全氮(TN)分别下降11.2%和15.3%,草地TOC和TN分别增长13.2%和5.8%,耕地TOC增长1.1%,而TN下降15.5%。与裸地相比,耕地和草地轻组有机氮分别增长13.9%和46.2%,轻组有机碳增长36.48%和62.0%。不同植被下热水浸提有机碳和高锰酸钾氧化碳总量的顺序为草地>耕地>裸地。在第二个试验中,施加有机肥能使TOC和TN分别增加了25.5%和18.6%。与对照相比,有机肥和氮磷肥的配施,使轻组有机氮分别增加了126.7%和12.17%,轻组有机碳增加了125.14%和17.14%。与对照和施氮磷肥相比,施加有机肥使颗粒有机氮分别增加了49.8%和23.2%,颗粒有机碳增加了6.5%和29.9%。高锰酸钾氧化有机碳和热水浸提有机碳含量的顺序为CK<NP<NPOM。【结论】草地与氮磷配施有机肥处理均有利于土壤TOC及活性有机碳的积累。 {{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J]. 土壤学报, 2006,43(1):46-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
高晓宁, 韩晓日, 刘宁, 等. 长期定位施肥对棕壤有机氮组分及剖面分布的影响[J]. 中国农业科学, 2009,42(8):2820-2827.
【目的】揭示施肥对土壤供氮潜力的影响。【方法】以土壤有机氮作为土壤肥力的重要指标采用Bremner法对棕壤29年长期定位试验的有机氮组成进行分级。【结果】单施化肥处理对耕层土壤有机氮含量及其组成无明显影响;有机肥和化肥配施,耕层土壤各形态酸解有机氮的含量都有不同程度的提高,其中氨基酸态氮的增加最为明显。在不同施肥处理中的顺序是氨基酸态氮>非酸解态氮>酸解氨态氮>酸解未知态氮>氨基糖态氮。各形态有机氮的剖面分布相似,含量均随土层的加深而降低。不同处理对有机氮各组分含量变化的作用表现为有机无机配施处理>单施有机肥处理>单施化肥处理、不施肥处理。【结论】长期有机无机肥配施显著提高了土壤的供氮潜力,是维持土壤肥力最优的施肥方式。 {{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
景宜然, 邓湘雯, 邓东华, 等. 湘西南不同石漠化程度土壤理化性质及相关性分析[J]. 水土保持学报, 2016,30(1):189-195.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
邓邦良, 袁知洋, 温卫华, 等. 武功山山地草甸土壤有机质、全氮及碱解氮分布格局及关系[J]. 江苏农业科学, 2015,43(11):414-417.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
贺美, 王迎春, 王立刚, 等. 应用DNDC模型分析东北黑土有机碳演变规律及其与作物产量之间的协同关系[J]. 植物营养与肥料学报, 2017,23(1):9-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
宋春雨, 张兴义, 刘晓冰, 等. 土壤有机质对土壤肥力与作物生产力的影响[J]. 农业系统科学与综合研究, 2008,24(3):357-362.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
孙福来, 张延霞, 庞详峰, 等. 长期定位施肥对土壤有机质和碱解氮及冬小麦产量的影响[J]. 土壤通报, 2007,38(5):1016-1018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李志杰, 李守正, 田昌玉, 等. 土壤有机质对小麦光合作用系统的影响[J]. 自然资源学报, 2000,15(B06):83-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
汪红霞. 有机肥施用对土壤有机质变化及其组分影响的研究[D]. 保定:河北农业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
邬建江, 潘剑君, 葛序娟, 等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015,29(3):130-135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
程少敏, 林桂凤, 张漫龄, 等. 土壤有机质对土壤肥力的影响与调节[J]. 辽宁农业科学, 2006(1):13-15.
用重铬酸钾容量法测定了彰武县部分地区的土壤有机质,进而总结了土壤有机质与土壤肥力各因素的关系,并提出了土壤有机质的适宜范围及土壤有机质的调节措施.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
闫翠萍, 裴雪霞, 王姣爱, 等. 秸秆还田与施氮对冬小麦生长发育及水肥利用率的影响[J]. 中国生态农业学报, 2011,19(2):271-275.
田间试验研究了小麦-玉米一年两熟耕作区玉米秸秆还田与氮肥配施和化肥单施对冬小麦生长发育、籽粒产量及氮肥表观利用率和水分利用效率的影响。结果表明, 施氮量相同时, 秸秆与氮肥配施越冬前和拔节期冬小麦总茎数和单株分蘖数低于化肥单施, 施氮量在75~225 kg?hm-2 时, 植株干重高于化肥单施; 孕穗期到成熟期植株干重、成穗率和产量构成因素秸秆与氮肥配施处理高于化肥单施处理, 籽粒产量增加58.9~339.6kg?hm-2, 水分生产率提高0.026~0.083 kg?m-3。施氮量在75 kg?hm-2 时, 秸秆与氮肥配施的氮肥表观利用率低于化肥单施; 在150~300 kg?hm-2 时高于化肥单施。因此, 针对目前黄淮海麦区小麦-玉米一年两熟种植制度下, 秸秆还田前期生物争氮、后期供肥能力增强的特点, 秸秆连续还田后配施纯氮225 kg?hm-2, 可有效提高灌水和氮肥利用率, 实现冬小麦高产高效栽培。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
陈定素, 陈祖君, 刘明星. 泸县土壤肥力现状及有机质提升行动实施措施[J]. 现代农业科技, 2011,19:291-292.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王丹丹, 周亮, 黄胜奇, 等. 耕作方式与秸秆还田对表层土壤活性有机碳组分与产量的短期影响[J]. 农业环境科学学报, 2013,32(4):735-740.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
陕西省农业科学院黄土高原农业测试中心. NY/T 85—1988,土壤有机质测定法[S]. 北京: 中国标准出版社, 1989.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
北京农业大学. NY/T 53—1987,土壤全氮测定法[S]. 北京: 中国标准出版社, 1987.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
周志军, 吕忠贤, 崔元吉. 鄂伦春自治旗土壤[R]. 鄂伦春自治旗土壤普查办公室, 1986.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Kravchenko, Y., Rogovska, N., Petrenko, L., Zhang, X., Song, C. and Chen, Y. 2012. Quality and dynamics of soil organic matter in a typical Chernozem of Ukraine under different long-term tillage systems. Can. J. Soil Sci. 92: 429-438. Tillage has been reported to induce changes in soil organic matter (SOM) concentrations and quality. Conversion of plow-tillage to minimum till and no-till (NT) farming enhances the SOM pool. Enrichment of the SOM pool is essential for maintaining fertility of Chernozems, advancing food security, and improving the environment. The main objective of this study was to examine the effect of different tillage systems on the SOM concentration, its quality and dynamics including CO, assimilation by heterotrophic bacteria and humus characteristics - the carbon (C) concentration in humic substances and the labile soil organic C fraction (SOCL) extracted with 0.1 N NaOH - as well as the molecular masses, spectroscopic parameters and physiological effects of humic acids on germinating pea (Pisum sativum L.) seeds. Our study was conducted on a long-term experimental site on a Haplick Chernozem in the Poltava region of Ukraine over a 10-yr period from 1996 to 2006. Results indicate that conversion from conventional to reduced soil tillage systems increased SOM concentrations in 0- to 10-cm soil layer and led to the accumulation of C in fulvic acids and humins. No significant differences in SOM storage in the 0- to 100-cm layer were observed among tillage systems. However, reduced tillage systems had a higher proportion of SOCL, a lower ratio of C in humic acids/C in fulvic acids and more humic acids with molecular masses from 110 to 2000 kDa. Our study demonstrated that the quality and dynamics of SOM are closely related to soil tillage practices.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
In agricultural land areas, no-tillage (NT) farming systems have been practiced to replace intensive tillage practices such as, moldboard plow (MP), chisel plow (CP), and other systems to improve many soil health indicators, and specifically to increase soil organic carbon (SOC) sequestration and reduce soil erosion. Numerous approaches to estimate the amounts and rates of SOC sequestration as a result of a switch to NT systems have been published, but there is a concern regarding protocol for assessing SOC especially for different tillage systems. Therefore, the objectives of this paper are to: (i) define and understand concepts of SOC sequestration, (ii) quantify SOC distribution and the methodology of measurements, (iii) address soil spatial variability at field-or landscape-scale for potential SOC sequestration, and (iv) consider proper field experimental design, including pretreatments baseline for SOC sequestration determination. For SOC sequestration to occur, as a result of a treatment applied to a land unit, all of the SOC sequestered must originate from the atmospheric CO2 pool and be transferred into the soil humus through land unit plants, plant residues, and other organic solids. The SOC stock present in soil humus at end of a study must be greater than the pretreatment SOC stock levels in the same land unit. However, one should recognize that a continuity equation showing drawdown in atmospheric concentration of CO2 may be difficult, if not impossible, to quantify. Therefore, SOC sequestration results of paired comparisons of NT to other conventional tillage systems with no pretreatments SOC baseline, and if the conventional system is not at a steady state, will likely be inaccurate where the potential for SOC loss exists in both systems. To unequivocally demonstrate that the SOC sequestration has occurred at a specific site, a temporal increase must be documented relative to pretreatment SOC content and linked attendant changes in soil properties and ecosystem services and functions with proper consideration given to soil spatial variability. Also, a standardized methodology that includes proper experimental design, pretreatment baseline, root zone soil depth consideration, and consistent method of SOC analysis must be used when determining SOC sequestration.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
汪景宽, 李双异, 张旭东, 等. 20年来东北典型黑土地区土壤肥力质量变化[J]. 中国生态农业学报, 2007,15(1):19-24.
通过大量样品分析和数据收集,研究了最近20年来东北典型黑土地区土壤肥力质量主要指标――pH、有机质、速效磷、速效钾和黏粒的变化情况,并在地理信息系统和地统计分析的辅助下,研究了该5项肥力指标以及综合肥力指数的时空变异规律。结果表明:20年中该地区土壤pH、有机质和速效钾平均含量明显降低,速效磷平均含量有较大增加;速效磷的变异系数变化最大,pH变化最小;20世纪80年代该地区土壤肥力综合指数以一、二级为主(80%以上),但21世纪初土壤肥力质量几乎被二、三级地所占据(98%以上)。该地区土壤肥力质量明显降低
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
孙波, 潘贤章, 王德建, 等. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008,23(11):1201-1208.
区域农田养分盈亏是驱动农田土壤肥力时空变化的主要因素。对我国6个农业生态试验站(海伦、沈阳、 栾城、长武、常熟、鹰潭)站区农田土壤肥力在近年来时空演变的研究表明,除了海伦站黑土和常熟站水稻土的有机质和全氮平均含量下降外,其他站区均呈现增加趋势,主要原因是黑土和乌栅土有机质和全氮含量较高,目前农田有机C和N投入水平无法维持其平衡;6个站区土壤速效磷有增有减,而土壤速效钾除了栾城和鹰潭站区域外均呈降低趋势。从站区农田养分的年平衡与土壤养分的年变化量关系看,农田氮、磷、钾的盈亏量决定了土壤养分的变化方向。土壤有机碳和全氮的初始含量过高(分别超过15.1 g/kg和1.60 g/kg)时,也会导致其年际间的变化方向从增加变为降低。农田氮素盈亏量与土壤全氮变化量之间相关不显著,主要是由于化肥投入和作物籽粒输出的农田氮平衡不能完全代表土壤氮素的真实盈亏情况;而农田磷素和钾素的盈亏量与土壤速效磷和速效钾的年变化量的显著相关。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
郝小雨, 周宝库, 马星竹, 等. 长期不同施肥措施下黑土作物产量与养分平衡特征[J]. 农业工程学报, 2015,31(16):178-185.
为了明确长期不同施肥措施下黑土作物产量及养分平衡特征,利用开始于1979年的哈尔滨黑土肥力长期定位试验,以小麦-大豆-玉米轮作(3a)为一个周期,选取对照(不施肥,记作CK)、常量氮磷钾化肥配施(小麦施N、P2O5量分别为150、75 kg/hm2,大豆施N、P2O5量分别为75、150 kg/hm2,玉米施N、P2O5量分别为150、75 kg/hm2,K2O共施75 kg/hm2,记作NPK)、常量有机肥(施肥18 600 kg/hm2,记作M)、常量化肥有机肥配施(化肥施量同NPK,有机肥施量同M,记作MNPK)和二倍量氮磷化肥有机肥配施(小麦施N、P2O5量分别为300、150 kg/hm2,大豆施N、P2O5量分别为150、300 kg/hm2,、玉米施N、P2O5量分别为300、150 kg/hm2,有机肥共37 200 kg/hm2,记作M2N2P2)5个处理,研究了不同作物的平均产量、产量年际变化和土壤养分表观平衡。结果表明:1)较CK,长期平衡施用化肥或化肥配施有机肥提高了作物产量,多年平均增产率分别在82.5%~91.6%(小麦)和35.6%~40.9%(玉米)之间。长期不同施肥措施增产效果表现为M2N2P2 >MNPK>NPK>M,有机无机肥配施与单施化肥处理间作物产量差异不显著。2)长期不施肥处理小麦和玉米产量随试验年限推移呈下降趋势,降幅分别为13.93和42.61 kg/(hm2·a),大豆则以7.409 kg/(hm2·a)的速率增加。施肥处理小麦、大豆和玉米产量随试验年限的增加呈总体上升的趋势。3)在该试验条件下,长期施用常量化肥处理(NPK)和常量化肥有机肥配施处理(MNPK)土壤氮亏缺量分别为29.7和17.5 kg/hm2,磷盈余量分别为33.4和61.2 kg/hm2。各处理土壤中钾素均表现为亏缺,亏缺量在30.4~73.0 kg/hm2之间。MNPK处理氮、钾供应状况有所改善,较NPK处理分别增加12.2和27.6 kg /hm2。4)作物产量与土壤有机质、碱解氮、有效磷、降雨量、生育期日平均气温呈显著正相关关系(P<0.05)。5)在黑土小麦-大豆-玉米典型轮作制度下,基于土壤养分平衡特征提出"稳氮、减磷和增钾"的施肥策略。该研究为评价和建立长期施肥模式、促进粮食持续生产提供依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
李世清, 李生秀, 邵明安, 等. 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J]. 中国农业科学, 2004,37(6):859-864.
在半干旱农田生态系统红油土上20年的肥料定位试验表明,施用秸秆和厩肥会显著改变耕层土壤有机氮组分和微生物体氮。施肥后酸解性氮的含量及比例明显增加,非酸解性氮含量下降。酸解性氮在不施肥时含量最低(646.3 mgN·kg-1),其次为施用化肥(684.3 mgN·kg-1),同时施用秸秆和化肥居中(794.1~950 mgN·kg-1),施用厩肥和化肥最高(1 103.2 mgN·kg-1)。各处理中,酸解性氮是土壤全氮的主体,占全氮的 73.4%~82.6%,这一比例从仅施化肥、对照、化肥+ 低量秸秆、化肥
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
杜晓玉, 徐爱国, 冀宏杰, 等. 华北地区施用有机肥对土壤氮组分及农田氮流失的影响[J]. 中国土壤与肥料, 2011(6):13-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
韩晓增, 李娜. 中国东北黑土地研究进展与展望[J]. 地理科学, 2018,38(7):1032-1041.
东北黑土区是世界四大片黑土区之一,它以高有机质和高肥力而著称,不仅是东北农业发展的基础,也是中国的粮仓,在保障国家粮食安全中具有举足轻重的地位。针对东北黑土自身的特色和面临的问题,首先描述了东北黑土地形成的条件及自然黑土的属性特征;其次阐述了黑土被开垦后农田化过程中土壤属性和肥力的演化情况,土壤有机质大幅度下降,土壤肥力降低,已严重影响到东北黑土地农业的可持续发展;在此基础上分析了黑土区耕作土壤不同保护途经及其对土壤肥力的影响机制;最后展望了未来黑土地理论研究的侧重点:应加大新技术、新方法和跨学科交叉理论的研究,培育更适合东北黑土地气候条件的高产优质作物品种,并结合目前黑土地保护的技术调控模式,优化作物种植模式,提升作物品质和产量,提高黑土区农业的综合生产力和竞争力、保证黑土区农业的永续利用。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |