期刊首页 在线期刊 专题
专题
智慧农业
智慧农业是集互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。
Please wait a minute...
  • 全选
    批量引用 |
  • 刘又夫, 肖德琴, 周家鑫, 卞智逸, 招胜秋, 黄一桂, 王文策
    智慧农业(中英文). 2023, 5(1): 99-110. https://doi.org/10.12133/j.smartag.SA202205007

    水禽养殖在向规模化、标准化与智能化方向迅速发展。智能养殖装备和信息化技术的研究与应用是促进水禽养殖业健康持续发展的关键,对提高水禽养殖的产出效率、降低生产过程对劳动力的依赖、契合绿色环保的发展理念以及实现高质量转型发展具有重要意义。本文重点介绍了智能化水禽棚舍的发展、水禽棚舍环境智能调控技术,以及智能化水禽饲喂、饮水、加药消杀和自动粪污处理等智能化设备的最新研究进展。此外,还介绍了可应用于水禽的信息采集技术现状,包括视觉成像系统、声音捕获系统和穿戴式传感器,以及智能管理技术的最新应用进展。最后指出了水禽产业的智能化养殖所面临的困难,并对未来水禽的智能化养殖的发展和改进提出了建议。

  • 段罗佳, 杨福增, 闫彬, 史帅旗, 秦纪凤
    智慧农业(中英文). 2022, 4(3): 24-41. https://doi.org/10.12133/j.smartag.SA202206010

    苹果产业作为苹果主产区经济发展的支柱产业,为当地果农增收、农业增效做出了重要贡献。随着产业的转型升级,苹果生产机械化和智能化的发展程度将影响其经济效益。为推进苹果生产智能化技术研究与智能装备研发,本文概述了苹果生产各个环节机械化水平,阐述了动力底盘、除草装备、收获装备等苹果生产装备主要技术特点,归纳了自动调平与控制、自主导航、自动避障、杂草识别、杂草去除、苹果识别、苹果定位、苹果分离等技术分别在智能化动力底盘、智能除草装备、苹果采收机器人上的研究与应用进展,并阐明了上述3种智能装备关键技术的基本原理和特点。在此基础上,指出了目前苹果生产智能装备技术面临的挑战,并提出了发展建议。

  • 陈枫, 孙传恒, 邢斌, 罗娜, 刘海深
    智慧农业(中英文). 2022, 4(4): 126-137. https://doi.org/10.12133/j.smartag.SA202206006

    元宇宙这一新兴概念受到了产、学、研各界的广泛关注。农业与元宇宙的结合将极大地推动农业信息化和智能化发展,为农业智能化转型升级提供新动能。为深入分析元宇宙在农业领域的应用研究可行性,本文首先分析了农业元宇宙的概念,以及区块链、非同质化代币、5G/6G、人工智能、物联网、三维重建、云计算、边缘计算和扩展现实等元宇宙农业应用的关键技术。接着讨论了元宇宙在虚拟农场、农业教学系统和农产品追溯系统三个农业应用领域的主要情景,最后总结了农业元宇宙面临的系统建立、通信基础、硬件设备和运营等方面的主要挑战,并展望了未来的发展方向。本文可为元宇宙在农业的应用研究提供指导。

  • 李莉, 李民赞, 刘刚, 张漫, 汪懋华
    智慧农业(中英文). 2022, 4(4): 26-34. https://doi.org/10.12133/j.smartag.SA202207003

    大田作物智慧种植业是智慧农业的重要内容。本文通过分析智慧农业发展历程,明确了大田作物智慧种植业发展战略总体目标和重点任务,凝练出关键技术,有针对性地提出适宜中国区域特征的发展模式。大田作物智慧种植的关键技术面临的主要挑战有:缺乏原位精准测量技术与农业专用传感器,作物模拟模型与实际生产有较大差别,信息传输技术的实时性、可靠性、通用性和稳定性有待改进,智能农业装备还需要进一步解决好农机/农艺相结合问题。在以上分析基础上,提出了大田作物智慧种植关键技术的5个一级技术以及相应的18个二级技术。5个一级技术包括环境与生物信息感知技术、信息移动互联与农业物联网技术、云计算与云服务技术、大数据分析与决策技术、智能农机装备与农业机器人技术。根据中国种植业区域特色提出了相应的6种智慧农业发展区,即东北与内蒙古规模化智慧生产发展区,京津冀鲁智慧都市农业与节水农业发展区,西北旱区棉花规模化智慧种植和旱作智慧农业绿色发展综合试验区,东南沿海循环型水稻智慧种植业综合发展试验区,长江中下游平原智慧粮油优化发展区,以及西南山区智慧特色农业发展区。最后从基础设施建设、技术、人才和政策角度给出了发展建议。

  • 刘晓航, 张昭, 刘嘉滢, 张漫, 李寒, FLORES Paulo, 韩雄哲
    智慧农业(中英文). 2022, 4(4): 49-60. https://doi.org/10.12133/j.smartag.SA202207004

    为快速准确获取玉米收获过程中遗失籽粒数信息,进行收割损失调节等管理,对比评估了单阶段和两阶段主流目标检测网络对田间玉米籽粒计数的性能。首先,利用RGB相机获取包含不同背景和不同光照的图像数据,并进一步生成数据集;其次,构建籽粒识别的不同目标检测网络,包括Mask R-CNN、EfficientDet-D5、YOLOv5-L、YOLOX-L,并利用所采集的420幅有效图像对构建的四种网络进行训练、验证、测试,图像数分别为200、40和180幅;最后,依据测试集图像的识别结果进行籽粒计数性能评价。试验结果表明,YOLOv5-L网络对测试集图像检测的平均精度为78.3%,模型尺寸仅为89.3 MB;籽粒计数的检测正确率、漏检率和F1值分别为90.7%、9.3%和91.1%,处理速度为55.55 f/s,识别与计数性能均优于Mask R-CNN、EfficientDet-D5和YOLOX-L网络,并对具有不同地表遮挡程度和籽粒聚集状态的图像具有较强的鲁棒性。深度学习目标检测网络YOLOv5-L可实现实际作业中玉米收获损失籽粒的实时监测,精度高、适用性强。

  • 胡瑞法, 刘万嘉文
    智慧农业(中英文). 2022, 4(4): 138-143. https://doi.org/10.12133/j.smartag.SA202205002

    本文首先阐述了科技革命的概念与满足条件,提出并分析了内生及外生农业颠覆性技术及其差异,特别是提出了跨界技术的概念并论证了其对农业科技进步的外生影响。然后分析了作为跨界技术的集大成者——智慧农业技术的特点,智慧农业对传统农业生产技术与生产方式的替代以及智慧农业与农村经济转型的关系。在此基础上讨论了中国智慧农业发展所面临的问题。最后有针对性地提出了促进颠覆性技术创新和智慧农业发展的政策建议,包括加强关键颠覆性核心技术研发、改革现有的农业高等教育体系、推动跨界技术的农业产业化研发以及在高标准农田及规模化养殖场实施智慧农业生产等。

  • 付虹雨, 王薇, 廖澳, 岳云开, 许明志, 王梓薇, 陈建福, 佘玮, 崔国贤
    智慧农业(中英文). 2022, 4(4): 74-83. https://doi.org/10.12133/j.smartag.SA202209001

    苎麻是重要的纤维作物之一,由于土地资源紧缺及优良品种的推广应用等原因,苎麻遗传变异和遗传多样性减少,对苎麻种质资源多样性调查和保护的需求日趋加大。基于无人机遥感的作物表型测量方法可以对不同基因型作物的生长特性进行频繁、快速、无损、精准的监测,实现作物种质资源调查,筛选特异优质品种。为了实现苎麻种质资源表型的高效综合评价,辅助筛选优势苎麻品种,本研究提出了一种基于无人机遥感影像的苎麻种质资源表型监测及筛选方法。首先,基于无人机遥感影像,利用Pix4dmapper软件生成试验区的数字地表模型(Digital Surface Model,DSM)和正射影像;然后,对苎麻种质资源关键表型参数(株高、株数、叶面积指数、叶片叶绿素含量、含水量)进行估测。基于DSM采用“差分法”提取苎麻株高,基于正射图像采用目标检测算法提取苎麻株数,采用机器学习方法估测苎麻叶面积指数(Leaf Area Index,LAI)、叶片叶绿素含量(SPAD值)、含水量;最后,根据提取的各项遥感表型参数,采用变异性分析和主成分分析方法对苎麻种质资源进行遗传多样性分析。结果表明,(1)基于无人机遥感的苎麻表型估测效果较好,株高的拟合精度为0.93,均方根误差为5.65 cm;SPAD值、含水量、LAI的拟合指标分别达到0.66、0.79、0.74,RMSE分别为2.03、2.21、0.63;(2)苎麻种质资源的遥感表型存在较大差异,LAI、株高和株数的估测值变异系数分别达到20.82%、24.61%和35.48%;(3)利用主成分分析法将苎麻种质资源的遥感表型聚类为因子1(株高、LAI)和因子2(LAI、SPAD值),因子1可用于苎麻种质资源结构特征评价,因子2可以作为高光效苎麻资源的筛选指标。本研究将为作物种质资源表型监测和育种相关分析提供参考。

  • 叶文帅, 康熙, 贺志将, 李孟飞, 刘刚
    智慧农业(中英文). 2022, 4(4): 144-155. https://doi.org/10.12133/j.smartag.SA202210001

    养殖场中肉牛较为活跃,采集得到的图像数据中肉牛姿态多变,肉牛姿态端正帧较少,导致自动测量肉牛体尺困难。针对以上问题,本研究通过分析肉牛骨架特征和肉牛图像边缘轮廓特征,提出一种多姿态肉牛体尺自动测量方法。首先,利用深度相机Azure Kinect DK从正上方采集肉牛俯视深度视频数据,对视频数据进行分帧处理;其次,对原始深度图像进行预处理,将肉牛从复杂的背景中提取出来;再次,利用Zhang-Suen算法提取目标图像肉牛骨架,检测骨架交点和端点,分析肉牛头部特征,并确定头部去除点,去除图像中肉牛头部信息;最后,利用改进的U弦长曲率算法提取肉牛轮廓曲率曲线,根据曲率值确定体尺测点,将体尺测点转换到三维空间中,计算体尺参数。本研究通过分析大量深度图像数据,将图像中肉牛姿态分为左歪、右歪、姿态端正、低头和抬头五类。试验结果表明,本研究提出的基于骨架的多姿态肉牛头部去除方法在5种姿态下的头部去除成功率均高于92%;在23头肉牛不同姿态共46帧深度图像中,利用基于改进U弦长曲率的体尺测点提取方法,测得体直长测量的平均绝对误差为2.73 cm,体高测量的平均绝对误差为2.07 cm,腹宽测量的平均绝对误差为1.47 cm。研究结果可为精确测量多姿态下肉牛体尺提供支撑。

  • 卓越, 丁峰, 严海军, 徐婧
    智慧农业(中英文). 2022, 4(4): 35-48. https://doi.org/10.12133/j.smartag.SA202206004

    饲草作物生长的动态监测与定量估算对于饲草规模化生产具有重要意义。无人机遥感分辨率高、灵活性强、成本低,近年来在饲草作物生长监测领域发展迅速,应用场景不断拓展。为了掌握无人机在饲草监测的国内外应用现状,确定重点发展方向,本文首先从数据获取、数据处理和饲草作物生长监测关键技术三个方面简述了无人机遥感在饲草作物监测中的基本研究方法。其次按照传感器类型从可见光、多光谱、高光谱、热红外和激光雷达遥感五个方面阐述了无人机遥感饲草作物生长监测的应用现状。最后针对研究应用中尚未解决的关键技术问题展望了未来的发展方向,提出融合饲草作物时空尺度数据和多源遥感数据、进一步拓展数据获取手段、研发智能化数据分析综合平台是未来饲草作物监测领域应用创新的关键所在。

  • 赵瑞雪, 杨晨雪, 郑建华, 李娇, 王剑
    智慧农业(中英文). 2022, 4(4): 105-125. https://doi.org/10.12133/j.smartag.SA202207009

    大数据、物联网和人工智能等现代信息技术在农业中的广泛应用,推动了农业农村现代化和智慧农业的发展,带动了农业经营主体对科技与知识的旺盛需求,农业知识服务成为农业转型升级和高质量发展的重要引擎。为解决现有农业知识分散无序、更新不及时、面向经营主体的知识服务不平衡、供需脱节等问题,本文总结分析了国内外农业知识服务的研究与实践现状,提出了一套基于农业全产业链、按照农业数据的全生命周期、面向农业经营主体的农业智能知识服务体系框架,设计了基于智能物联网(Artificial Intelligence & Internet of Things,AIoT)的农情感知与大数据汇聚治理、基于知识图谱的农业知识组织与计算挖掘,以及基于多场景的农业智能知识服务三个层次。文中归纳了包括空天地AIoT全维度农情感知、多源异构农业大数据汇聚治理、知识建模、知识抽取、知识融合、知识推理、跨媒体检索、智能问答、个性化推荐技术、决策支持等农业智能知识服务涉及的关键技术,并举例了其研究应用。最后从农业数据获取、模型构建、知识组织、智能知识服务技术和应用推广等方面探讨了未来农业智能知识服务的发展趋势及对策建议。总结发现,农业智能知识服务是破解当前农业知识服务供需矛盾,实现跨媒体农业数据到知识的跨越,推动农业知识服务向个性化、精准化和智能化升级的关键,亦是农业科技自立自强、现代农业提质增效的重要支撑。

  • 尹彦鑫, 孟志军, 赵春江, 王昊, 温昌凯, 陈竞平, 李立伟, 杜经纬, 王培, 安晓飞, 尚业华, 张安琪, 颜丙新, 武广伟
    智慧农业(中英文). 2022, 4(4): 1-25. https://doi.org/10.12133/j.smartag.SA202212005

    无人农场是智慧农业的一种表现形式,也是建设农业强国和实现农业现代化的重要探索。无人农场以数据、知识和智能装备为核心要素,将现代信息技术与农业深度融合,实现农业全过程生产所需的信息感知、定量决策、智能控制、精准投入及个性化服务一体化。本文系统地阐述了大田无人农场的概念与总体技术架构,讨论了信息感知与智能决策、精准作业系统与装备、自动驾驶、无人化农机装备以及无人农场管控平台等五项大田无人农场的关键技术与装备,深入分析了发展中国大田无人农场亟待解决的关键科学与技术问题。以吉林省公主岭市玉米无人农场为例介绍了物联网、大数据、云计算以及人工智能等技术在玉米全程无人化生产中的具体应用及效果。最后,展望了无人农场在解决全球农业生产面临的“无人种田”等共性问题中发挥的重要作用,分析了中国发展无人农场存在的机遇和挑战,提出了中国发展无人农场的战略目标与思路。

  • 许钰林, 康孟珍, 王秀娟, 华净, 王浩宇, 沈震
    智慧农业(中英文). 2022, 4(4): 156-163. https://doi.org/10.12133/j.smartag.SA20220712

    玉米和大豆为同季旱粮作物,“争地”矛盾十分突出,同时掌握玉米和大豆两者的价格是必要的。相较于现货,农产品期货价格具有价格发现功能。因此,玉米和大豆期货价格分析和预测对种植结构调整和农户作物品种选择均具有重要意义。本研究首先分析了玉米和大豆期货价格的相关性,通过相关性计算和格兰杰因果检验,发现玉米和大豆期货具有较强的正向相关性,且大豆期货价格是玉米期货价格的格兰杰原因;其次,基于长短时记忆(Long Short-Term Memory,LSTM)模型对玉米和大豆期货价格进行预测,并引入注意力机制(Attention)对期货价格预测模型行优化。对比结果表明,与差分整合移动平均自回归模型(Autoregressive Integrated Moving Average Model,ARIMA)和支持向量回归模型(Support Vector Regression,SVR)相比,LSTM模型在各项指标中均为更优,而与单一的LSTM模型相比,加入Attention机制的Attention-LSTM模型在各项指标中均更优。其中,玉米和大豆期货预测结果的平均绝对误差(Mean Absolute Error,MAE)分别提升3.8%和3.3%,均方根误差(Root Mean Square Error,RMSE)分别提升0.6%和1.8%,平均绝对百分误差(Mean Absolute Percentage Error,MAPE)分别提升4.8%和2.9%,证明了Attention机制的加入可以帮助模型提取有效信息,提升性能。最后,使用LSTM模型结合大豆期货历史价格共同预测玉米期货价格,MAE提升了6.9%、RMSE提升了1.1%、MAPE提升了5.3%。试验结果表明,本研究使用Attention-LSTM模型对玉米和大豆期货价格进行预测,相较于通用预测模型,Attention-LSTM模型能够提高大豆和玉米期货价格预测精度,且结合相关农产品期货价格数据,可以提升单个农产品期货模型的预测性能。

  • 范承志, 王梓文, 杨兴超, 罗永开, 徐学欣, 郭斌, 李振海
    智慧农业(中英文). 2022, 4(4): 61-73. https://doi.org/10.12133/j.smartag.SA202212001

    土壤盐渍化是限制黄河三角洲地区农业经济发展的重要因素,进一步阻碍了农业生产。为了探索无人机影像在地表无植被覆盖条件下的土壤盐分含量反演状况,以黄河三角洲典型区域为研究区,获取地物高光谱和无人机多光谱两种数据源与样点土壤盐分含量,通过优选敏感光谱参量,使用偏最小二乘回归(Partial Least Squares Regression,PLSR)和随机森林(Random Forest,RF)两种机器学习算法建立土壤盐分含量反演模型,实现研究区的土壤盐分含量反演。结果表明:(1)高光谱1972 nm波段与土壤盐分含量间的敏感性最高,相关系数为-0.31。(2)两种不同数据源优化后的RF模型均优于PLSR,且稳定性更好。(3)基于地物高光谱的RF模型(R2 =0.54,RMSEv=3.30 g/kg)优于基于无人机多光谱的RF模型(R2 =0.54,验证RMSRv=3.35 g/kg)。(4)结合无人机影像采用多光谱RF模型对研究区耕地的土壤盐分含量进行反演,研究区总体以轻、中度盐渍化土壤为主,对作物的耕种具有一定程度的限制。本研究构建并对比了两种不同源数据的黄河三角洲土壤盐分反演模型,并结合各自数据源的优势进行优化,探索了地表无植被覆盖情况下的土壤盐分含量反演方法,对更精准反演土地盐渍化程度提供了参考。

  • 罗庆, 饶元, 金秀, 江朝晖, 王坦, 王丰仪, 张武
    智慧农业(中英文). 2022, 4(4): 84-104. https://doi.org/10.12133/j.smartag.SA202210004

    毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。

  • 商枫楠, 周学成, 梁英凯, 肖明玮, 陈桥, 罗陈迪
    智慧农业(中英文). 2022, 4(3): 120-131. https://doi.org/10.12133/j.smartag.SA202207001

    自然环境下果实的精准检测是火龙果采摘机器人执行采摘作业的先决条件。为提高自然环境下果实识别的精确性、鲁棒性和检测效率,本研究对YOLOX(You Only Look Once X)网络进行改进,提出了一种含有注意力模块的目标检测方法。为便于在嵌入式设备上部署,本方法以YOLOX-Nano网络为基准,将卷积注意力模块(Convolutional Block Attention Module,CBAM)添加到YOLOX-Nano的主干特征提取网络中,通过为主干网络提取到不同尺度的特征层分配权重系数来学习不同通道间特征的相关性,加强网络深层信息的传递,降低自然环境背景下对火龙果识别的干扰。对该方法进行性能评估和对比试验,经过训练后,该火龙果目标检测网络在测试集的AP0.5值为98.9%,AP0.5:0.95的值为72.4%。在相同试验条件下对比其它YOLO网络模型,该方法平均检测精度分别超越YOLOv3、YOLOv4-Tiny和YOLOv5-S模型26.2%、9.8%和7.9%。最后对不同分辨率的火龙果果园自然环境下采集的视频进行实时测试。试验结果表明,本研究提出的改进YOLOX-Nano目标检测方法,每帧平均检测时间为21.72 ms,F1值为0.99,模型大小仅3.76 MB,检测速度、检测精度和模型大小满足自然环境下火龙果采摘的技术要求。

  • 韩冷, 何雄奎, 王昌陵, 刘亚佳, 宋坚利, 齐鹏, 刘理民, 李天, 郑义, 林桂海, 周战, 黄康, 王忠, 查海涅, 张国山, 周国涛, 马勇, 伏浩, 聂宏远, 曾爱军, 张炜
    智慧农业(中英文). 2022, 4(3): 1-11. https://doi.org/10.12133/j.smartag.SA200201014

    传统果园生产中面临着人口老龄化带来的劳动力短缺、农机作业装备与生产资料管理困难、生产效率低下等问题,通过建设融合物联网、大数据、装备智能化等技术的智慧果园,可有望解决上述问题。为应对北京市农业现代化建设需求、引领中国农业发展方向,基于桃、梨果园全程机械化、智能化管理等目标,本研究在北京市重要的桃、梨等优势果品产区——平谷区峪口镇西营村构建了约30 hm2梨与桃的智慧果园。果园中应用了10多种病、虫、水、肥、药的各类信息获取传感器,装备了28种机械化、智能化技术支持的农机装备,采用的关键技术包括智能信息获取系统、水肥一体管理系统以及病虫害智能管理系统,智能作业装备系统包括无人驾驶割草机、智能防冻机、开沟施肥机、自动驾驶履带智能仿形变量喷雾机、六旋翼枝向对靶无人机、多功能采摘平台以及整理修剪机等。同时,在果园中还构建了智能管理平台。经比较发现,智慧果园生产模式可减少人工成本50%以上,节省农药用量30%~40%、肥料用量25%~35%、灌溉用水量60%~70%,综合经济效益提升32.5%。智慧果园的推广实施将进一步推动中国果业生产水平的提高,促进中国智慧农业的发展。

  • 郭江鹏, 王鹏飞, 李昕昊, 杨欣, 李建平, 边永亮, 薛春林
    智慧农业(中英文). 2022, 4(3): 75-85. https://doi.org/10.12133/j.smartag.SA202201015

    针对果园多风道喷雾机内部气流分布不均导致由出风口吹出的气流紊乱、影响使雾滴在果树冠层上均匀沉积的问题,对多风道喷雾机内部导流板长度参数进行了优化。应用计算流体动力学(Computational Fluid Dynamics,CFD)技术,基于Star-CCM+软件对喷雾机送风系统内部气流进行了模拟分析,得到出风口1~6的风速在不同导流板长度的标准差分别为0.7468、0.6776、1.4441、5.1305、4.5768和0.8209。对风速标准差较大的出风口3、出风口4、出风口5进行响应面分析,最终确定导流板1长度200.00 mm、导流板2长度60.00 mm、导流板3长度50.00 mm为最优参数组合。在最优组合参数下,计算得到对称出风口3和出风口6的风速值分别为39.135和41.320 m/s,相对偏差为5.58%;出风口4和出风口5的风速值分别为33.022和34.328 m/s,相对偏差为3.95%,符合设计要求。室内风速试验结果表明,在距离喷雾机出风口1.25 m处,风场风速由上层到下层逐渐增大,实现风场按果树冠层形状分布,喷雾机左右两侧风场对称分布,气流分布均匀。果园多风道喷雾机设计满足要求,可为同类设计提供参考。

  • 宋淑然, 胡圣洋, 孙道宗, 代秋芳, 薛秀云, 谢家兴, 李震
    智慧农业(中英文). 2022, 4(3): 86-94. https://doi.org/10.12133/j.smartag.SA202205005

    基于管道的自动喷雾技术及设施可以解决山地果园植保作业中喷雾作业效率低、劳动强度大、移动式喷雾机械难以进入的问题。本研究设计了适用于山地果园的管道自动喷雾系统,主要包括喷雾首部、喷雾管道、自动喷雾控制器及喷雾小组等结构,计算了山地果园管道药液压力损失,研制了自动喷雾控制器,并开发了控制程序。喷雾作业时,喷雾首部将药液经管道引入果园,利用自动喷雾控制器控制电磁阀,逐次打开或关闭喷雾小组,实现手动控制或自动控制喷雾。为确定电磁阀持续开通时间,进行了喷雾有效性试验。结果表明,控制喷雾小组的电磁阀持续开通8 s即可保证喷雾的有效性;采用这种管道自动喷雾设施的喷雾作业效率为2.61 hm2/h,与人工喷雾相比,提高了喷雾作业的效率。本研究可为山地果园的喷雾技术及智能施药设施的研发提供参考和思路。

  • 王辉, 陈睿鹏, 余志雪, 贺越, 张帆, 熊本海
    智慧农业(中英文). 2022, 4(3): 143-151. https://doi.org/10.12133/j.smartag.SA202205006

    草莓恶疫霉会引起草莓革腐病和冠腐病,影响草莓的经济效益,但感染恶疫霉早期植株没有明显的症状,无法被及时准确地诊断,因此迫切需要低成本诊断方法实现早期预防。草莓植株感染恶疫霉会释放一种独特的有机挥发性气体4-乙基苯酚,可作为该疾病快速诊断的标志性气体。本研究使用半导体单壁碳纳米管(Single-Wall Carbon Nanotube,SWNT)和场效应传感器(Field Effect Transistor,FET)制备半导体场效应气体传感器(SWNT/FET),进而修饰对4-乙基苯酚灵敏度高、选择性好的金属卟啉MnOEP获得MnOEP-SWNT/FET。通过拉曼光谱、紫外光谱、伏安分析法研究MnOEP-SWNT/FET,分析理化性能及优化检测条件,提高MnOEP-SWNT/FET对4-乙基苯酚的气体敏感性能。在最优检测条件下,MnOEP-SWNT/FET对0.25%~100%的4-乙基苯酚饱和蒸汽(20 ℃),检出限为0.15%的4-乙基苯酚饱和蒸气(S/N =3),测定不同浓度的相对标准误差低于10%。通过测定实际样本,表明MnOEP-SWNT/FET检测草莓健康植株会存在假阳性,但对感染恶疫霉的草莓植株有较高的检测精度。

  • 张志博, 赵西宁, 高晓东, 张利, 杨孟豪
    智慧农业(中英文). 2022, 4(3): 95-107. https://doi.org/10.12133/j.smartag.SA202206001

    黄土高原近20年来苹果栽植面积迅猛增加,对区域生态水文和社会经济发展均产生了重要影响。但该区域果园地块小且场景复杂,仅有县/市尺度统计数据,尚无苹果园实际的空间分布信息。为此,本研究建立了无人机低空遥感影像专业数据集。融合迁移学习与深度学习方法,将残差神经网络ResNet34网络迁移到Linknet网络,得到R_34_Linknet网络。将R_34_Linknet网络与5种常用的深度学习语义分割模型SegNet、FCN_8s、DeeplabV3+、UNet和Linknet应用于黄土高原苹果园空间分布提取,表现最好的模型为R_34_Linknet,其在测试集上的调和平均值F1为87.1%,像素准确度PA为92.3%,均交并比MIoU为81.2%,频权交并比FWIoU为85.7%,平均像素准确度MPA为89.6%。将空间金字塔池化结构(Atrous Spatial Pyramid Pooling,ASPP)与R_34_Linknet网络相结合,扩大网络的感受野,得到R_34_Linknet_ASPP网络;然后对ASPP结构进行改进,得到R_34_Linknet_ASPP+网络。对比三种网络性能,表现最优的为R_34_Linknet_ASPP+,在测试集上F1为86.3%,PA为94.7%,MIoU为82.7%,FWIoU为89.0%,MPA为92.3%。使用R_34_Linknet_ASPP+在长武县王东沟和白水县通积村提取苹果园面积精度分别为94.22%和95.66%。本研究提出的R_34_Linknet_ASPP+方法提取到的苹果园更加准确,苹果园地块边缘处效果更好,可作为黄土高原苹果园空间分布制图等研究的技术支撑和理论依据。

  • 缪友谊, 陈红, 陈小兵, 田皓予, 袁栋
    智慧农业(中英文). 2022, 4(3): 42-52. https://doi.org/10.12133/j.smartag.SA202206007

    为解决现代化果园水果收获过程中人工劳动强度大、作业效率低、配套机械匮乏等问题,结合果树矮砧宽行密植模式和农艺种植要求,本研究设计了一种自走式果园多工位收获装备。首先介绍了自走式果园多工位收获装备的整机结构和工作原理,然后根据“两侧、两高度、六工位”采摘作业模式,对履带自走式底盘、扩展作业平台、果实自动输送装箱及转运系统的关键部件进行了参数分析、计算与结构设计。田间试验结果表明,所设计的自走式果园多工位收获装备可同步于六工位人工采收速度,苹果采收损伤率为4.67%,装箱均布系数为1.475,装箱速度为72.9个/min,能够满足果园采收作业要求。

  • 李阳, 彭彦昆, 吕德才, 李永玉, 刘乐, 朱宇杰
    智慧农业(中英文). 2022, 4(3): 132-142. https://doi.org/10.12133/j.smartag.SA202206012

    为满足苹果内部品质产地检测分级需求,本研究研发出检测模块和分级模块,构成可移动式苹果内部品质果园产地分级系统。在此系统的基础上,以苹果糖度和霉心病为代表品质指标,提出一种基于乘法效应消除(Multiplicative Effect Elimination,MEE)的光谱校正方法,用于消除苹果物理属性差异导致的有效光程变化对光谱的影响。利用该系统获取苹果600~900 nm漫透射光谱数据,分别采用多元散射校正(Multiple Scattering Correction,MSC)、标准正态变量变换(Standard Normal Variate Transform,SNV)和MEE算法对苹果光谱预处理后,建立糖度偏最小二乘回归(Partial Least Squares Regression, PLSR)预测模型和霉心病偏最小二乘判别(Partial Least Squares - Discriminant Analysis,PLS-DA)模型。结果表明,MEE算法相比于MSC和SNV算法建模结果更好,糖度预测模型的校正集相关系数(Rc)、校正集均方根误差(Root Mean Square Error of Calibration,RMSEC)、预测集相关系数(Rp)和预测集均方根误差(Root Mean Square Error of Prediction,RMSEP)分别为0.959、0.430%、0.929和0.592%;霉心病判别模型的校正集敏感性、校正集特异性、校正集准确率、预测集敏感性、预测集特异性和预测集准确率分别为98.33%、96.67%、97.50%、100.00%、90.00%和95.00%。将建立的最佳预测模型导入分级系统进行试验,结果表明该系统的分级准确率为90.00%,分级速度约3个/s。该系统具有成本低、结构简单、移动方便等优点,可以满足苹果内部品质果园产地检测分级需求。

  • 夏烨, 雷哓晖, 祁雁楠, 徐陶, 袁全春, 潘健, 姜赛珂, 吕晓兰
    智慧农业(中英文). 2022, 4(3): 108-119. https://doi.org/10.12133/j.smartag.SA202207006

    疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。

  • 李扬帆, 何雄奎, 韩冷, 黄战, 何苗
    智慧农业(中英文). 2022, 4(3): 53-62. https://doi.org/10.12133/j.smartag.SA202207007

    为解决芒果园传统植保作业中农药用量大、施药不均匀、作业效率低等问题,并构建智慧芒果园,本研究对比了地面弥雾机和六旋翼植保无人机两种果园施药机具在芒果冠层中的药液雾滴沉积性能。将芒果冠层分为上中下层,以柠檬黄为示踪剂,使用高清相纸与滤纸采集药液雾滴,通过图像处理等手段分析雾滴沉积分布均匀性。试验结果表明,植保无人机在芒果树上部冠层叶片表面的雾滴覆盖率显著高于地面弥雾机,在其余冠层部位,两种施药机具在叶片表面药液无显著差异覆盖;植保无人机处理组叶片正反面平均覆盖率均为地面弥雾机的1.5~2倍,对叶片背面的防治优于地面弥雾机。地面弥雾机处理组叶片正面雾滴密度显著高于植保无人机,叶片背面无显著差异,植保无人机处理组正反面均未满足低量喷雾20个/cm2的病虫害防治要求。地面弥雾机药液沉积集中在中下冠层(61.1%),植保无人机集中在上部冠层(43.0%),冠层内部沉积比例地面弥雾机(48.6%)>植保无人机(25.5%),但地面弥雾机在冠层上部沉积能力不足,沉积占比仅为17%。研究表明,相较于植保无人机,地面弥雾机适用于芒果冠层中下部及内部病虫害防治,同时该机具较高的雾滴覆盖密度在喷洒杀菌剂时也有明显优势,植保无人机适用于针对芒果上部冠层如蓟马、炭疽等易发于外部花絮的病虫害防治。

  • 郭阳阳, 杜书增, 乔永亮, 梁栋
    智慧农业(中英文). 2023, 5(1): 52-65. https://doi.org/10.12133/j.smartag.SA202205009

    准确高效地监测动物信息,及时分析动物的生理与身体健康状况,并结合智能化技术进行自动饲喂和养殖管理,对于家畜规模化养殖意义重大。深度学习技术由于具有自动特征提取和强大图像表示能力,更适用于复杂的畜牧养殖环境中动物信息监测。为进一步分析人工智能技术在当下智慧畜牧业中研究应用,本文针对牛、羊和猪三种家畜,介绍了深度学习技术在目标检测识别、体况评价与体重估计以及行为识别与量化分析的研究现状。其中,目标检测识别有利于构建动物个体电子档案,在此基础上可以关联动物的体况体重信息、行为信息以及健康情况等,这也是智慧畜牧业发展的趋势。智慧畜牧养殖技术当前面临着应用场景存在多视角、多尺度、多场景和少样本等挑战以及智能技术泛化应用的问题,本文结合畜牧业实际饲养和管理需求,对智慧畜牧业发展进行展望并提出了:结合半监督或者少样本学习来提高深度学习模型的泛化能力;人、装备和养殖动物这三者的统一协作及和谐发展;大数据、深度学习技术与畜牧养殖的深度融合等发展建议,以期进一步推动畜牧养殖智能化发展。

  • 冯涵, 张浩, 王梓, 江世界, 刘伟洪, 周凌卉, 王亚雄, 康峰, 刘星星, 郑永军
    智慧农业(中英文). 2022, 4(3): 12-23. https://doi.org/10.12133/j.smartag.SA202207002

    针对果园管理数字化程度低、构建方法较为单一等问题,本研究提出了一种基于激光点云的三维虚拟果园构建方法。首先采用手持式三维点云采集设备(3D-BOX)结合即时定位与地图构建-激光测距与测绘(Simultaneous Localization and Mapping-Lidar Odometry and Mapping,SLAM-LOAM)算法获取果园点云数据集;然后通过统计滤波算法完成点云数据离群点与噪声点的去除,并结合布料模拟算法(Cloth Simulation Filtering,CSF)与DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,实现地面去除与果树聚类分割,进而使用VoxelGrid滤波器降采样;最后利用Unity3D引擎,构建虚拟果园漫游场景,将作业机械的实时GPS(Global Positioning System)数据从WGS-84坐标系转换为高斯投影平面坐标系,并通过LineRenderer显示实时轨迹,实现作业机械运动轨迹控制与作业轨迹的可视化展示。为验证虚拟果园构建方法的有效性,在海棠果园与芒果园开展果园构建方法测试。结果表明,所提出的点云数据处理方法对海棠果树与芒果树聚类分割的准确率分别达到了95.3%与98.2%;通过与实际芒果园的果树行距、株距对比,虚拟芒果园的平均行间误差约为3.5%,平均株间误差约为6.6%。并且将Unity3D构建出的虚拟果园与实际果园相比,该方法能够有效复现果园三维实际情况,得到了较好的可视化效果,为果园的数字化建模与管理提供了一种技术方案。

  • 刘理民, 何雄奎, 刘伟洪, 刘紫嫣, 韩虎, 李扬帆
    智慧农业(中英文). 2022, 4(3): 63-74. https://doi.org/10.12133/j.smartag.SA202207008

    为同时实现果园智能植保机自主导航及自动对靶喷雾,研制了一种果园自主导航兼自动对靶喷雾机器人。首先采用单个3D LiDAR(Light Detection and Ranging)采集果树信息确定兴趣区(Region of Interest,ROI),对ROI内点云进行2D化处理得到果树质心坐标,通过随机一致性(Random Sample Consensus,RANSAC)算法得到果树行线,并确定果树行中间线(导航线),进而控制机器人沿导航线行驶。通过编码器及惯性测量单元(Inertial Measurement Unit,IMU)确定机体速度及位置,IMU矫正采集到的果树分区冠层信息,最后通过程序判断分区冠层的有无控制喷头是否喷雾。结果表明,机器人自主导航时最大横向定位偏差为21.8 cm,最大航向偏角为4.02°,相比于传统连续喷雾机施药液量、空中漂移量及地面流失量分别减少20.06%、38.68%及51.40%。本研究通过单个3D LiDAR、编码器及IMU在保证喷雾效果的前提下,实现了喷雾机器人自主导航及自动对靶喷雾,降低了农药使用量及飘失量。

  • 马为红, 李嘉位, WANG Zhiquan, 高荣华, 丁露雨, 于沁杨, 余礼根, 赖成荣, 李奇峰
    智慧农业(中英文). 2022, 4(2): 99-109. https://doi.org/10.12133/j.smartag.SA202203005

    针对当前中国肉牛繁育管理水平和信息化智能化水平不高等问题,本研究借鉴国际先进肉牛养殖国家的经验,建立了适合中国的商业化肉牛繁育大数据平台。该平台主要完成肉牛种质信息资源的整合,在线自动测定肉牛关键繁育性状,全程服务支撑肉牛繁育过程,形成肉牛种质资源大数据分析决策,并实现肉牛联合育种创新模式。本文详细介绍了商业化肉牛繁育大数据软件平台开发思路,包括数据中心的实现、软件平台前端开发技术和后端开发技术等,并总结了该平台的关键技术创新和模式创新内容,包括肉牛种质资源与良种管理系谱深度挖掘技术,非接触式繁育性状自动获取评价技术,以及多源异构信息融合提供智能决策支持等,为中国肉牛种业发展提供可持续发展的信息化解决方案,以促进肉牛育种整体水平的提高。

  • 何锐敏, 郑可锋, 尉钦洋, 张小斌, 张俊, 朱怡航, 赵懿滢, 顾清
    智慧农业(中英文). 2022, 4(2): 163-173. https://doi.org/10.12133/j.smartag.SA202201012

    精准饲喂是全龄人工饲料工厂化养蚕节本增效的核心技术之一,家蚕自动化识别与计数是实现精准饲喂的关键环节。本研究基于机器视觉系统获取工厂化养蚕过程中蚕在4龄和5龄期的数字图像,利用改进深度学习模型Mask R-CNN检测蚕体和残余饲料。通过在Mask R-CNN模型框架中加入像素重加权策略和边界框细调策略,从噪声数据中训练一个鲁棒性更好的目标检测模型,实现模型性能的优化,提高对蚕体和饲料边界的检测和分割能力。改进Mask R-CNN模型对蚕的检测和分割交并比阈值为0.5时的平均精度(Average Precision at IoU=0.5,AP50)分别为0.790和0.795,识别准确率为96.83%;对残余饲料的检测和分割AP50分别为0.641和0.653,识别准确率为87.71%。模型部署在NVIDIA Jetson AGX Xavier开发板上,单张图像平均检测时间为1.32 s,最长检测时间为2.05 s,运算速度可以满足养蚕盒单元在生产线上移动实时检测的要求。该研究为工厂化养蚕精准饲喂信息系统和投喂装置的研发提供了核心算法,可提高人工饲料的利用率,提升工厂化养蚕生产管理水平。

  • 郑晨曦, 温维亮, 卢宪菊, 郭新宇, 赵春江
    智慧农业(中英文). 2022, 4(2): 150-162. https://doi.org/10.12133/j.smartag.SA202203009

    针对小麦植株分蘖多、器官间交叉遮挡严重,难以用图像或点云准确提取植株和器官表型的问题,本研究提出了基于三维数字化的小麦植株表型参数提取方法。首先提出了小麦植株各器官数字化表达方法,制定了适用于小麦全生育期的三维数字化数据获取规范,并依据该规范进行数据获取。根据三维数字化数据的空间位置语义信息和表型参数的定义,提出了小麦植株表型参数计算方法,实现了小麦植株和器官长度、粗度和角度等3类共11个常规可测表型参数的计算。进一步提出了定量描述小麦株型和叶形的表型指标。其中,植株围度通过基于最小二乘法拟合三维离散坐标计算,用于定量化描述小麦植株松散/紧凑程度;小麦叶片卷曲和扭曲程度为定量化叶形的指标,根据叶面向量方向变化计算得到。利用丰抗13号、西农979号和济麦44号三个品种小麦起身期、拔节期、抽穗期三个时期的人工测量值和提取值进行验证。结果表明,在保持植株原始三维形态结构的前提下,提取的茎长、叶长、茎粗、茎叶夹角与实测数据精度相对较高,R2 分别为0.93、0.98、0.93、0.85;叶宽和叶倾角与实测数据的R2 分别为0.75、0.73。本方法能便捷、精确地提取小麦植株和器官形态结构表型参数,为小麦表型相关研究提供了有效技术支撑。

  • 耿闻轩, 赵俊晔, 阮继伟, 侯跃辉
    智慧农业(中英文). 2022, 4(2): 183-193. https://doi.org/10.12133/j.smartag.SA202203006

    人工智能(Artificial Intelligence,AI)辅助种植有助于提高设施园艺作物精准化管理水平、缓解日益凸显的劳动力紧缺问题。草莓是典型的劳动密集型园艺作物,研究对比采用不同AI种植策略和关键技术对草莓温室生产的调控效果,可对园艺作物种植的AI技术改进和产业化应用提供参考。本研究对比分析了4个不同AI种植策略对草莓生长发育和产量及品质的调控效果,并以人工种植管理为参照,对AI种植的技术特点和存在问题进行了分析。结果表明,知识图谱、深度学习、视觉识别、作物模型和作物生长仿真器等技术在草莓AI种植中各有优势。其中,AI-1组采用知识图谱技术将专家经验、作物数据和环境数据进行融合,建立了标准化草莓种植知识结构和智慧种植决策方法,对作物生产发育的调控较为稳健,以较低的投入获得了最高产值。与人工种植管理相比,AI种植策略组的平均产量提高了1.66倍,平均产值提高了1.82倍,最高投入产投比提高了1.27倍。针对高产优质的目标,在配备较完善的智能化设备和控制组件的温室生产条件下,AI辅助种植能有效提高草莓种植管控的精准度,减少水肥和劳动力的投入,获得较高的收益,但也存在对人工管理扰动的模拟难、作物本体信息采集难等问题。

  • 杨亮, 熊本海, 王辉, 陈睿鹏, 赵一广
    智慧农业(中英文). 2022, 4(2): 86-98. https://doi.org/10.12133/j.smartag.SA202204001

    家畜养殖的生产模式已由粗放型向集约型转变,生产水平不断提高,但较低的劳动生产率和劳动力短缺等问题严重制约中国家畜养殖业的快速发展。利用现代信息和人工智能技术,研发家畜饲喂机器人,包括喂料、推料等机器人,实现数字化、智能化的家畜养殖,提高畜牧养殖生产力是解决上述问题的主要途径。为深入分析机器人技术在家畜养殖中的研究现状,本文收集了国内外家畜机器人研究实例和文献资料,从轨道式喂料机器人、自走式喂料机器人和推料机器人3个方面重点介绍家畜饲喂机器人的研究进展,分析了饲喂机器人的技术特点和实际应用情况,从技术和应用两个方面对国内外饲喂机器人进行了比较,并从战略规划制定、核心技术发展和产业发展趋势三个方面进行展望并提出发展建议,为家畜饲喂机器人在中国的进一步发展和应用提供参考。

  • 庄家煜, 许世卫, 李杨, 熊露, 刘克宝, 钟志平
    智慧农业(中英文). 2022, 4(2): 174-182. https://doi.org/10.12133/j.smartag.SA202203013

    为进一步提高农产品供需过程模拟与估算精度,本研究以自1980年以来国家级和省级的大量农业数据作为样本,充分考虑农产品品种、时间、收入、经济发展等因素影响,构建基于深度学习长短时记忆神经网络(Long Short-Term Memory Neural Network,LSTM)的多种农产品供需预测模型。模型在充分考虑机理性约束条件的前提下,利用深度学习算法在非线性模型分析预测中的优势,对稻谷、小麦、玉米、大豆、猪肉、禽肉、牛肉、羊肉、水产品等9种主要农产品供需进行分析预测。将基于本模型的2019—2021年产量预测结果与国家统计局公布数据进行对比验证,三年平均预测准确率96.98%,表明本研究构建的预测模型能够高效地反映隐性指标变化对预测结果的影响。该模型可以通过及时地监测农业运行数据,为多区域、跨期的农业展望工作提供智能化技术支持。

  • 康熙, 刘刚, 初梦苑, 李前, 王彦超
    智慧农业(中英文). 2022, 4(2): 1-18. https://doi.org/10.12133/j.smartag.SA202204005

    利用先进的信息技术推动智能养殖业发展已经成为奶牛养殖研究领域的重要目标和任务。计算机视觉技术具有非接触、免应激、低成本及高通量等优点,在畜牧生产中应用前景广阔。本文在阐述了计算机视觉技术在智能化养殖业发展中重要性的基础上,首先介绍了基于计算机视觉的奶牛生理参数监测进展,包括体尺、体温、体重的前沿监测设备、技术和模型参数。然后阐述了奶牛跛行及乳腺炎等疾病诊断的前沿技术发展过程和研究现状。目前,相关技术研究和应用推广存在检测准确性不高,受环境因素影响较大,非标准化养殖场结构制约检测系统普及,以及检测系统成本较高等问题和挑战。最后,本文结合中国养殖业发展现状,针对保证检测准确性、减少环境干扰等问题,就如何提高计算机视觉技术在智能化养殖业中的准确性和普适性提出了相关建议,旨在为中国奶牛养殖业的科学管理和现代化生产提供新方法和新思路。

  • 熊本海, 赵一广, 罗清尧, 郑姗姗, 高华杰
    智慧农业(中英文). 2022, 4(2): 110-120. https://doi.org/10.12133/j.smartag.SA202205003

    饲料粮缺口的逐渐加大,导致中国饲料粮安全问题逐步转化为粮食安全问题。因此,全面整合饲料营养基础数据资源,提高一切可利用饲料资源的营养价值,成为中国今后长期保障国家粮食安全的技术措施之一。本研究依据16类中国饲料原料描述规范和属性数据标准,全面用数字化模式收集整理了自“六五”至“十三五”期间累积的50万条以上已有饲料资源的种类、空间分布、饲料成分含量及营养价值特性数据,利用MySQL网络数据库及PHP程序语言,开发了新一代饲料营养大数据分析平台(http://www.chinafeeddata.org.cn/)并提供Web数据共享功能。首先,平台提供所有入库数据的可视化分析,可实现单个或多个饲料多种养分和多种图形模式的直观比对。通过二维码技术提供所有饲料营养属性数据及饲料实体样本溯源数据的移动端实时分享与下载服务。其次,平台构建了通过已知饲料概略养分在线预测其他有效养分的回归模型,为饲料原料养分变异提供动态分析。最后,平台基于地理信息系统技术,将饲料概略养分和主要矿物元素含量数据与其所处的地理位置分布相结合,实现了饲料营养数据地理信息图谱的分布查询及对比分析,同时提供各种数据的下载方式,为已有饲料数据的全面应用带来便利。研究表明,拓展饲料资源数据并提供饲料养分的预测分析模型,可最大化利用已有饲料养分数据的价值,进一步嵌入各类饲料配方的网络计算模块,可以达到饲料营养数据的一站式服务及数据的最大化升值服务。

  • 李嘉位, 马为红, 李奇峰, 薛向龙, WANG Zhiquan
    智慧农业(中英文). 2022, 4(2): 64-76. https://doi.org/10.12133/j.smartag.SA202206003

    基于点云采集技术的非接触式测量能够缓解肉牛在采集体尺体重等参数时的应激问题,但采集肉牛的三维数据耗时长且易受环境干扰而产生大量无关噪点,难以适应实际养殖环境需求。为解决该问题,本研究开发了一种非接触式肉牛三维点云重建与目标提取系统与方法,采集的肉牛三维点云可为肉牛育种育肥提供大量标准化和三维量化表型数据。三维点云采集系统由Kinect DK深度相机、红外对射光栅触发器和射频识别(Radio Frequency Identification,RFID)触发器组成,可在肉牛自由通过步行道的瞬间实现肉牛点云的多角度瞬时采集。肉牛点云目标提取方法基于C++语言与点云处理库(Point Cloud Library,PCL)开发,通过空间直通滤波、统计学离群点滤波、随机抽样一致(Random Sample Consensus,RANSAC)形态拟合与点云抽稀、基于降维密度聚类的感知盒滤波等算法有效滤除与肉牛紧贴的栏杆等干扰,不破坏点云的完整性,实现肉牛点云的三维重建与分析。在养殖场中对20头肉牛进行了124次点云采集与目标提取试验。结果表明,重建的肉牛三维模型与肉牛真实形态1:1对应,系统的采集成功率为91.89%,采集的点云与真实值相比,体尺重建误差为0.6%。该系统与方法可以在无人干预的情况下,实现多角度肉牛点云数据的自动采集与三维重建,并从复杂环境中自动提取目标肉牛的点云,为非接触式肉牛体高、体宽、体斜长、胸围、腹围和体重等核心表型参数的测量提供重要的方法支撑,促进肉牛育种和育肥的标准化管理。

  • 张楷, 韩书庆, 程国栋, 吴赛赛, 刘继芳
    智慧农业(中英文). 2022, 4(2): 53-63. https://doi.org/10.12133/j.smartag.SA202204003

    奶牛步态时相是反映奶牛健康及跛行严重程度的重要指标。为准确自动识别奶牛步态时相,本研究提出一种融合高斯混合模型 (Gaussian Mixture Model,GMM) 和隐马尔科夫模型 (Hidden Markov Model,HMM)的无监督学习奶牛步态时相识别算法 GMM-HMM。使用惯性测量单元采集奶牛后肢加速度和角速度信号,通过卡尔曼滤波消除噪声,筛选并提取特征值,构建GMM-HMM模型,实现奶牛静立相、连续步态中的站立相和摆动相等3种步态时相的自动识别。结果表明,静立相识别的准确率、召回率和F1分别为89.28%、90.95%和90.91%,连续步态中的站立相识别的准确率、召回率和F1分别为91.55%、86.71%和89.06%,连续步态中的摆动相识别的准确率、召回率和F1分别为86.67%、91.51%和89.03%。奶牛步态分割的准确率为91.67%,相较于基于事件的峰值检测法和动态时间规整算法准确率分别提高了4.23%和1.1%。本研究可为下一步基于穿戴式步态分析的奶牛跛行特征提取提供技术参考。

  • 纪楠, 尹艳玲, 沈维政, 寇胜利, 戴百生, 王国维
    智慧农业(中英文). 2022, 4(2): 19-35. https://doi.org/10.12133/j.smartag.SA202204004

    叫声是评估生猪福利水平的重要方式之一。本文首先分析了生猪叫声与福利之间的相互关系。其中,与生猪福利密切相关的三种生猪叫声包括咳嗽声、尖叫声和呼噜声。基于这三种声音进一步分析声音与环境,声音与身体状况,以及声音与健康之间的关系。随后,对当下的生猪福利监测所采用的传感器,包括穿戴式与非接触式两大类进行分析,并简述不同方式的优劣势。基于非接触式的优势及麦克风传感器技术的可行性,从声音的获取和标记、特征提取以及声音分类三个方面对现有的生猪声音处理技术进行了阐述和评估。最后,从声音监测技术、生猪个体福利监测、商业应用以及养猪从业者四个角度讨论了叫声在生猪福利监测中面临的研究困境以及发展趋势。研究发现,目前关于生猪声音分析的研究大多集中在分类器的选择和识别算法的改进上,而对端点检测和特征选择的研究较少。同时,当下面临的主要挑战还包括不同生长阶段的音频数据获取难度较高,缺乏公共的猪舍内音频数据库以及缺少完善的声音指标与动物福利监测评价体系。总体来说,建议进一步对声音识别过程中涉及的各部分技术进行深入探索,同时加强跨学科专家之间的合作,共同推动声音监测在生猪实际生产中的应用,从而加快精准畜牧业的实现。

  • 黄梓宸, SUGIYAMA Saki
    智慧农业(中英文). 2022, 4(2): 135-149. https://doi.org/10.12133/j.smartag.SA202202008

    设施农业智能装备是设施农业稳定、高品质、高效生产的必要保障。日本智能采收装备已有近四十年的研发经验,其发展具有一定启发和借鉴意义。本文综述了日本设施农业采收机器人的研究应用进展,分析了基于农机农艺结合的茄科(番茄、茄子、青椒)、葫芦科(黄瓜、瓜类水果)、芦笋和草莓等10种设施农业采收机器人的采收技术,其中详细对比了番茄、草莓等几种蔬菜历代采收机器人的设计理念及其优点与不足。分析了设施农业采收机器人面临的科学问题及解决方案,总结了未来发展趋势及对中国的启发。本文可为加速推进中国设施农业采收机器人的智慧化、智能化和产业化发展提供借鉴参考。

  • 陈占琦, 张玉安, 王文志, 李丹, 何杰, 宋仁德
    智慧农业(中英文). 2022, 4(2): 77-85. https://doi.org/10.12133/j.smartag.SA202201001

    牦牛个体身份标识是实现个体建档、行为监测、精准饲喂、疫病防控及食品溯源的前提。针对智慧畜牧智能化、信息化等养殖平台中动物个体识别技术应用需求,本研究提出一种基于迁移学习的多尺度特征融合牦牛脸部识别算法(Transfer Learning-Multiscale Feature Fusion-VGG, T-M-VGG)。以预训练的视觉几何组网络(Visual Geometry Group Network,VGG)为骨干网络构建基于迁移学习的卷积神经网络模型,获取其Block3、Block4、Block5输出的特征图,分别用F3、F4、F5表示,将F3和F5经过三个不同膨胀系数的空洞卷积组成的并行空洞卷积模块增大感受野后,送入改进的特征金字塔进行多尺度特征融合;最后利用全局平均池化代替全连接层分类输出。试验结果表明,本研究提出的T-M-VGG算法在194头牦牛的38,800张数据集中识别准确率达到96.01%,模型大小为70.75 MB。随机选取12张不同类别牦牛图像进行面部遮挡测试,识别准确率为83.33%。本算法可以为牦牛脸部识别研究提供参考。

手机访问