Transcriptomic Analysis in Morella cerifera Seedlings Root under Simulated Drought Stress in Response to 5-hydroxy-tryptamine

JIAO Yun,JIA Huimin,FANG Congling,CHAI Chunyan

PDF(3464 KB)
PDF(3464 KB)
Journal of Plant Genetic Resources ›› 2024, Vol. 25 ›› Issue (7) : 1175-1189. DOI: 10.13430/j.cnki.jpgr.20231105001
Research Articles

Transcriptomic Analysis in Morella cerifera Seedlings Root under Simulated Drought Stress in Response to 5-hydroxy-tryptamine

  • JIAO Yun1,2, JIA Huimin3, FANG Congling4, CHAI Chunyan4
Author information +
History +

Abstract

The plant growth regulator 5-hydroxy-tryptamine (5-HT) has been used in agricultural production to improve crop drought resistance. The underlying molecular mechanisms of its transcriptional response are largely unknown. In this study, the simulated drought stress-related physiological and molecular mechanisms of exogenous 5-HT on Morella cerifera seedlings were elucidated, including transcriptome sequencing and the evaluation of endogenous hormone levels and antioxidant enzyme activity. The results demonstrated that abscisic acid (ABA) and jasmonic acid (JA) content in Morella cerifera fibrous roots significantly increased following 50 μmol/L 5-HT treatments but decreased in 100 μmol/L treatments. Both the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were significantly increased but hydrogen peroxide (H2O2) content decreased following 50 μmol/L 5-HT treatments. Based on gene set enrichment analysis (GSEA), two-concentration levels 5-HT treatments were investigated. The differential gene set terms primarily included antioxidant activity, oxidoreductase activity, auxin and gibberellin-mediated signaling, cell wall biosynthetic, phospholipid translocation, xylan biosynthetic, pectin metabolic, secondary metabolite biosynthetic, phenylpropanoid metabolic and galacturonan metabolic process. The differentially expressed genes (DEGs) related to antioxidant enzyme activity and hormone metabolism were mainly PERLACDHAR and PIN. Eight sets of co-expressed gene modules were significantly correlated with 5-HT and drought stress by the weighted gene co-expression network analysis (WGCNA). The hub genes KAB1218346.1(LOX3), KAB1219593.1(WRKY53), KAB1217691.1(CZF1) were primarily associated with hormone metabolism and regulation of transcription. These key genes and their molecular regulatory mechanisms will be important targets for future research.

Key words

5-hydroxy-tryptamine / simulated drought stress / Morella cerifera / transcriptomics

Cite this article

Download Citations
JIAO Yun,JIA Huimin,FANG Congling,CHAI Chunyan. Transcriptomic Analysis in Morella cerifera Seedlings Root under Simulated Drought Stress in Response to 5-hydroxy-tryptamine. Journal of Plant Genetic Resources. 2024, 25(7): 1175-1189 https://doi.org/10.13430/j.cnki.jpgr.20231105001

References

[1]王硕, 贾潇倩, 何璐, 李浩然,王红光,何建宁,李东晓,房琴,李瑞奇. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44Wang S, Jia X Q, He L, Li H R, Wang H G, He J N, Li D X, Fang Q, Li R Q. Response mechanism of crops to drought stress and measures for improving drought resistance of crops: Research progress. Chinese Agricultural Science Bulletin, 2022, 38(29):31-44
[2] Fadiji A E, Santoyo G, Yadav A N, Babalola O O. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 2022, 13: 962427
[3] Arnao M B, Hernández-Ruiz J. Melatonin: Synthesis from tryptophan and its role in higher plant. Amino acids in higher plants. Wallingford UK: CAB International, 2015:390-435
[4] Wang X N, Zhang J C, Zhang H Y, Wang X F, You C X. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. Plant Physiology and Biochemistry, 2023, 197: 107627
[5] Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. Journal of Fungi, 2022, 8(3): 290
[6] Erland L A E, Turi C E, Saxena P K. Serotonin, Canada: Elsevier Academic Press, 2019: 23-46
[7]田姗姗, 李继强, 邹锡玲, 张学昆, 付桂萍, 吕燕, 曾柳, 闫蕾, 刘月, 钟燕, 杨静, 陈建军, 马海清, 程勇. 5-羟色胺对油菜幼苗干旱的缓解效应. 中国油料作物学报, 2019, 41(2): 192Tian S S, Li J Q, Zou X L, Zheng X K, Fu G P, Lv Y, Zeng L, Yan L, Liu Y, Zhong Y, Yang J, Chen J J, Ma H Q, Cheng Y. Effect of exogenous 5-hydroxy-tryptamine (5-HT) on rape (Brassica napus L.) seedling under drought stress. Chinese Journal of Oil Crop Sciences,2019, 41(2): 192
[8] He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Ding X Y, Yong C, Zhou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regulation, 2021, 94: 161-170
[9] Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiology, 2011, 52(3): 490-508
[10] Abbasi B H, Younas M, Anjum S, Ahmad N, Ali M, Fazal H, Hano C. Signaling and communication in Plants. Switzerland: Springer Nature Switzerland AG, 2020: 75-92
[11] Ravishankar G A, Ramakrishna A. Serotonin and melatonin:Their functional role in plants, food, phytomedicine, and human health. CRC Press. (2016-11-28)[2023-11-20]. https://www.researchgate.net/publication/311313850
[12] Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biology, 2018, 18: 362
[13] Mukherjee S. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiology and Biochemistry, 2018, 132: 33-45
[14] Pelagio-Flores R, Ruiz-Herrera L F, Lopez-Bucio J. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. Physiologia Plantarum, 2016, 158(1): 92-105
[15] Hayashi K, Fujita Y, Ashizawa T, Suzuki F, Nagamura Y, Hayano-Saito Y. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant Journal, 2016, 85(1): 46-56
[16] Oberle B, OliviaCole P, Frank G, Gates A, Hall B, Harvey D, Scott M E, Setterberg C, Bustetter S P. Multilevel allometric growth equations improve accuracy of carbon monitoring during forest restoration. Trees, Forests and People, 2023, 14: 100442
[17]汪国云, 陈炯怡, 赵岚, 赵海波,李雨珊,周超超,焦云,高中山. 蜡杨梅砧木资源利用现状和前景. 果树资源学报, 2022, 3(1):1-6Wang G Y, Chen J Y, Zhao L, Zhao H B, Li Y S, Zhou C C, Jiao Y, Gao Z S. Application status and prospect of wax bayberry as rootstock for Chinese bayberry. Journal of Fruit Resources, 2022, 3(1):1-6
[18] Knox G. Drought-tolerant plants for north and central florida. Florida: University of Florida Cooperative Extension Service, 2005: 1-19
[19] Jiao Y, Sha C, Xie R, Shu Q. Comparative analysis of the potential physiological and molecular mechanisms involved in the response to root zone hypoxia in two rootstock seedlings of the Chinese bayberry via transcriptomic analysis. Functional & Integrative Genomics, 2023, 23(1): 11
[20] Xie R, Zheng L, Jiao Y, Huang X. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environmental and Experimental Botany, 2021, 192: 104647
[21]胡海涛, 钱婷婷, 杨玲. 基于H2DCFDA荧光探针的植物活性氧检测方法. 植物学报, 2022, 57(3): 320-326Hu H T, Qian T T, Yang L. Detection of reactive oxygen species using H2DCFDA probe in plant. Chinese Bulletin of Botany, 2022, 57 (3): 320-326
[22] Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120
[23] Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M. The Arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2012, 40(D1): D1202-D1210
[24] Thimm O, Bl?sing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee SY, Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 2004, 37(6): 914-939
[25] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202
[26]李艳肖, 张春兰, 徐兴源, 陈艳秋, 向殿军, 刘鹏. 基于转录组学的蓖麻耐盐基因的挖掘. 植物遗传资源学报, 2023, 24(6):1778-1793Li Y X, Zhang C L, Xu X Y, Chen Y Q, Xiang D J, Liu P. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis. Journal of Plant Genetic Resources, 2023, 24(6):1778-1793
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001, 25(4): 402-408
[28] Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta,2010, 231: 887-899
[29] Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 2013, 20(2): 254-260
[30]王晓娟, 李娜, 姚文强, 杨立中,王文奇. 树木抗旱生理特性及转录组调控研究进展.内蒙古农业大学学报:自然科学版, 2023, 44(5):81-88Wang X J, Li N,Yao W Q, Yang L Z, Wang W Q. Advances in drought resistance physiological characteristics and transcriptome regulation of trees. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2023, 44(5):81-88
[31] Wang B, Liu C, Zhang D, He C, Zhang J, Li Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 2019, 19(1): 1-19
[32] Ngara R, Goche T, Swanevelder D Z, Chivasa S. Sorghum’s whole-plant transcriptome and proteome responses to drought stress: A review. Life, 2021, 11(7): 704
[33]卫星, 王政权, 张国珍. 干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化. 植物生态学报, 2010, 34(12): 1454-1462Wei X, Wang Z Q, Zhang G Z. Morphological and activity variation of mitochondria in fine roots of Fraxinus mandshurica seedling under drought stress. Chinese Journal of Plant Ecology, 2010, 34 (12): 1454-1462
[34]梅映学, 魏玮, 张诗婉, 张韫璐, 王金缘, 王茜, 苏昕, 马莲菊. 干旱锻炼对盐胁迫下水稻幼苗根系抗氧化酶活性的影响. 浙江农业学报, 2016, 28(8):1304-1308Mei Y X,Wei W,Zhang S W,Zhang Y L,Wang J Y,Wang Q,Su X,Ma L J. Effect of PEG pretreatment on antioxidant enzymes activity under salt stress in root of rice seedling. Acta Agriculturae Zhejiangensis, 2016, 28(8):1304-1308
[35] Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23: 663-679
[36] Erland L A E, Turi C E, Saxena P K. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnology Advances, 2016, 34(8): 1347-1361
[37]张国芹, 牟建梅, 陈虎根. 黄秋葵果实质地变化的生化和转录组联合分析. 植物遗传资源学报, 2023, 24(1): 282-295Zhang G Q, Mou J M, Chen H G. Combined biochemical and transcriptomic analysis of the Okra fruit texture Changes. Journal of Plant Genetic Resources, 2023, 24(1): 282-295
[38] Guo T L, Liu C H, Meng F X, Hu L, Fu X M, Yang Z H, Wang N, Jiang Q, Zhang X Z, Ma F W. The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnology Journal, 2022, 20(3): 511-525
[39] Niu Z M, Li G T, Hu H Y, Lv J J, Zheng Q W, Liu J Q, Wan D S. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity. Horticulture Research, 2021, 8: 88
[40]杨帅, 高尚珠, 卢晗, 詹亚光, 曾凡锁. 植物细胞壁形成及在非生物胁迫中的作用. 植物生理学报, 2023, 59 (7): 1251-1264Yang S, Gao S Z, Lu H, Zhan Y G, Zeng F S. Plant cell wall development and its function in abiotic stress. Plant Physiology Journal, 2023, 59 (7): 1251-1264
[41]陈东滨, 王茜茜, 孙智仪, 杨小英, 傅经效, 郭新梅, 宋希云. 玉米ZmXTH23的克隆、表达及其对盐胁迫和干旱胁迫的响应.农业生物技术学报, 2019, 27(9): 1533-1541Chen D B, Wang Q Q, Sun Z Y, Yang X Y, Fu J X, Guo X M, Song X Y. Cloning and Expression of ZmXTH23 in maize (Zea mays) and its response to salt and drought stress. Journal of Agricultural Biotechnology, 2019, 27(9): 1533-1541
[42] Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, 66(3): 695-707
[43] Raza A, Charagh S, García-Caparrós P, Rahman M A, Ogwugwa V H, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food, 2022, 13(1): 196-217
[44] Kumar R, Bohra A, Pandey A K, Pandey M K, Kumar A. Metabolomics for plant improvement: Status and prospects. Front Plant Science, 2017,8: 1302
[45] Xing Q, Zhang, X, Li Y, Shao Q, Cao S, Wang F, Qi H. The lipoxygenase CmLOX13 from oriental melon enhanced severe drought tolerance via regulating ABA accumulation and stomatal closure in Arabidopsis. Environmental and Experimental Botany, 2019, 167: 103815
[46] Zhang Y, Wang K, Wang Z, Li X, Li M, Zhu F, Majeed Z, Lan X, Guan Q. The lipoxygenase gene AfLOX4 of Amorpha fruticosa L. is a potential regulator of drought stress tolerance pathways under saline and alkaline conditions. Acta Physiologiae Plantarum, 2023, 45(6): 72
[47] Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a C3H-Tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology, 2013, 161(3): 1202-1216
[48]兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24(5):1223-1235Lan M J, Hou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. Journal of Plant Genetic Resources, 2023, 24(5): 1223-1235
[49]陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY 转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 323-332Chen L Y,Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 323-332

Funding

Foundation project: The Modern Seed Industry Special Project in Ningbo(2021Z008)
Share on Mendeley
PDF(3464 KB)

21

Accesses

0

Citation

Detail

Sections
Recommended

/