Progresses on Wheat Improvement by Using Transgenic and Genome Editing Technologies

YU Mei,TANG Hua-li,YE Xing-guo

PDF(926 KB)
PDF(926 KB)
Journal of Plant Genetic Resources ›› 2023, Vol. 24 ›› Issue (1) : 102-116. DOI: 10.13430/j.cnki.jpgr.20220809001
Review

Progresses on Wheat Improvement by Using Transgenic and Genome Editing Technologies

  • YU Mei, TANG Hua-li, YE Xing-guo
Author information +
History +

Abstract

Wheat grain, with rich nutrition and various end-uses in markets, provides diets in over one-third of the global human population. However, with the increasing influence of biological and abiotic stresses, such as threats of diseases and pests, environmental damages of drought, high temperature and salinization, the sustainability of global wheat production is under increasing threats. In order to ensure the global food security supply and demands for high quality products, the desirable increases on wheat production and quality require to the constantly developing of new breeding methods and germplasm resources used for wheat breeding. In the past decade, significant progress on plant biotechnologies such as transgenic study and genome editing has been achieved, and gradually applied in wheat genetic improvement. To date, the efficient systems for wheat genetic transformation and genome editing have been established, in which the transformation efficiency for the model genotypes mediated by Agrobacterium is higher than 50% and the editing efficiencies of some target genes via CRISPR/Cas9 reach to 40%-70%. The genotype independency in wheat transformation and genome editing has been overcome almost. Some of wheat traits including disease resistance, stress tolerance, quality feature, yield potential, and growth and development regulation have been modified by using transgenic and gene editing methodologies; many new wheat genetic stocks showing disease resistances to powdery mildew, rusts, scab and yellow mosaic virus, tolerances to pre-harvest sprouting, drought and salt, low gliadin content, high gluten content, male sterility and haploid induction ability were created by the requirement of wheat improvement. This review aims to summarize the latest research progresses on transgene and genome editing in wheat, and to explore the current problems and possible solutions.

Key words

wheat / transgene / gene editing / germplasm resource

Cite this article

Download Citations
YU Mei,TANG Hua-li,YE Xing-guo. Progresses on Wheat Improvement by Using Transgenic and Genome Editing Technologies. Journal of Plant Genetic Resources. 2023, 24(1): 102-116 https://doi.org/10.13430/j.cnki.jpgr.20220809001

References

[1] Tesfaye K D. Climate change in the hottest wheat regions. Nature Food, 2021, 2(1): 8-9
[2]耿宁杰. 中国转基因作物产业化现状及法规问题. 分子植物育种, 2022, 20(17): 5675-5679Geng N J. Research on the current situation and legal issues of the industrialization of genetically modified crops in China. Molecular Plant Breeding, 2022, 20(17): 5675-5679
[3]黄耀辉, 王艺洁, 杨立桃, 焦悦, 付仲文. 生物育种新技术作物的安全管理. 生物技术进展, 2022, 12(2): 198-204Huang Y H, Wang Y J, Yang L T, Jiao Y, Fu Z W. Safety management of new technology crops in biological breeding. Advances in Biotechnology, 2022, 12(2): 198-204
[4] Vasil V, Srivastava V, Castillo A M, Fromm M E, Vasil I K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Nature Biotechnology, 1993, 11(12): 1553
[5] Cheng M, Fry J E, Pang S, Zhou H, Hironaka C M, Duncan D R, Conner T W, Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 1997, 115(3): 971-980
[6] Li J R, Ye X G, An B Y, Du L P, Xu H J. Genetic transformation of wheat: Current status and future prospects. Plant Biotechnology Reports, 2012, 6(3): 183-193
[7] Wang K, Riaz B, Ye X G. Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. The Crop Journal, 2018, 6(1): 22-31
[8]张伟, 尹米琦, 赵佩, 王轲, 杜丽璞, 叶兴国. 我国部分主推小麦品种组织培养再生能力评价. 作物学报, 2018, 44(2): 208-217Zhang W, Yin M Q, Zhao P, Wang K, Du L P, Ye X G. Evaluation of tissue culture regeneration ability of some main wheat varieties in China. Acta Agronomica Sinica, 2018, 44(2): 208-217
[9] Wang K, Liu H Y, Du L P, Ye X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 2017, 15(5): 614-623
[10] Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture, 2014, 119(3): 647-659
[11] Hayta S, Smedley M A, Demir S U, Blundell R, Hinchliffe A, Atkinson N, Harwood W A. An efficient and reproducible Agrobacterium mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 2019, 15(1): 121
[12] Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods in Molecular Biology, 2015, 1223: 189-198
[13]叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38(2): 191-201Ye X G, She M Y, Wang K, Du L P, Xu H J. Research progress in identification, cloning and application of genes related to plant tissue culture regeneration. Acta Agronomica Sinica, 2012, 38(2): 191-201
[14] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z M, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P Z, Bidney D, Falco S C, RegisterIII J C, Zhao Z Y, Xu D P, Jones T J, Gordon-Kamm W J. Morphogenic regulators baby boom and wuschel improve monocot transformation. The Plant Cell, 2016, 28: 1998-2015
[15] Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491
[16] Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38(11): 1274-1279
[17] Wang K, Shi L, Liang X N, Zhao P, Wang W X, Liu J X, Chang Y N, Hiei Y, Yanagihara C, Du L P, Ishida Y, Ye X G. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8(2): 110-117
[18] Bibikova M, Golic M, Golic K G, Carroll D. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169-1175
[19] Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao Y Y, Sawbridge T, Davies J P, Mason J, Webb S R, Spangenberg G, Ainley W M, Walsh T A, Hayden M J. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnology Journal, 2018, 16(12): 2088-2101
[20] Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T. Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 2020, 11: 586027
[21] Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, DOI: https://www.sciencedirect.com/science/article/pii/S2666388021000071?via%3Dihub
[22] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951
[23] Shan Q W, Wang Y P, Li J, Gao C X. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 2014, 9(10): 2395-2410
[24] Zhang S J, Zhang R Z, Song G Q, Gao J, Li W, Han X D, Chen M L, Li Y L, Li G Y. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biology, 2018, 18(1): 302
[25] Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany, 2020, 71(4): 1337-1349
[26] Dongjin K, Megan H, Eleanor B, Hikmet B. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Functional & Integrative Genomics, 2021, 21(3-4): 1-12
[27] Janni M, Sella L, Favaron F, Blechl A E, De L G, D'Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Molecular Plant-Mcrobe Interactions, 2008, 21(2): 171-177
[28] Fahim M, Ayala-Navarrete L, Millar A A, Larkin P. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnology Journal, 2010, 8(7): 821-834
[29] Chen M, Sun L Y, Wu H Y, Chen J, Ma Y Z, Zhang X X, Du L P, Cheng S H, Zhang B Q, Ye X G, Pang J L, Zhang X M, Li L C, Andika I B, Chen J P, Xu H J. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnology Journal, 2014, 12(4): 447-456
[30] Liu P, Zhang X X, Zhang F, Xu M Z, Ye Z X, Wang K, Liu S, Han X L, Cheng Y, Zhong K L, Zhang T Y, Li L Z, Ma Y Z, Chen M, Chen J P, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 2021, 14(7): 1088-1103
[31] Xing L P, Di Z C, Yang W W, Liu J Q, Li M N, Wang X J, Cui C F, Wang X Y, Wang X E, Zhang R Q, Xiao J, Cao A Z. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science, 2017, 8: 1948
[32] Jing Y X, Liu J, Liu P, Ming D F, Sun J Q. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat. Scientific Reports, 2019, 9(1): 1-15
[33] Eissa H F, Hassanien S E, Ramadan A M, El-Shamy M M, Saleh O M, Shokry A M, Abdelsattar M, Morsy Y B, El-Maghraby M A, Alameldin H F, Hassan S M, Osman G H, Mahfouz H T, Gad E-K G A, Madkour M A, Bahieldin A. Developing transgenic wheat to encounter rusts and powdery mildew by overexpressing barley chi26 gene for fungal resistance. Plant Methods, 2017, 13(1): 41
[34] Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 2014, 7(12): 1740-1755
[35] Kaur J, Fellers J, Adholeya A, Velivelli S L S, El-Mounadi K, Nersesian N, Clemente T, Shah D. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Research, 2017, 26(1): 37-49
[36] Luo M, Xie L Q, Chakraborty S, Wang A H, Matny O, Jugovich M, Kolmer J A, Richardson T, Bhatt D, Hoque M, Patpour M, S?rensen C, Ortiz D, Dodds P, Steuernagel B, Wulff Brande B H, Upadhyaya N M, Mago R, Periyannan S, Lagudah E, Freedman R, Lynne R T, Steffenson B J, Ayliffe M. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology, 2021, 39(5): 561-566
[37] Wang N, Tang C L, Fan X, He M Y, Gan P F, Zhang S, Hu Z Y, Wang X D, Yan T, Shu W X, Yu L G, Zhao J R, He J N, Li L L, Wang J F, Huang X L, Huang L L, Zhou J M, Kang Z S, Wang X J. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell, 2022, 185(16):2961-2974
[38] Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X M. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. The New Phytologist, 2012, 196(4): 1155-1170
[39] Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 2008, 59(15): 4195-4204
[40] Zhu X L, Rong W, Wang K, Guo W, Zhou M P, Wu J Z, Ye X G, Wei X N, Zhang Z Y. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal, 2021, 20(4): 777-793
[41] Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 2002, 106(1): 74-83
[42] Li Z, Zhou M P, Zhang Z Y, Ren L J, Du L P, Zhang B Q, Xu H J, Xin Z Y. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional & Integrative Genomics, 2011, 11(1): 63-70
[43] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, Trick H, Paul S A, Yu J M, Zhang Z Y, Bai G H. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51(7): 1099-1105
[44] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368(6493): 5435
[45] Wang K, Gong Q, Ye X G. Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133(5): 1603-1622
[46] Peng C J, Xu W G, Hu L, Li Y, Qi X L, Wang H W, Hua X, Zhao M Z. Effects of the maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat. Plant Growth Regulation, 2018, 84(1): 191-205
[47] Shavrukov Y, Baho M, Lopato S, Langridge P. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnology Journal, 2016, 14(1): 313-322
[48] Chen J, Gong Y, Gao Y, Zhou Y B, Chen M, Xu Z S, Guo C H, Ma Y Z. TaNAC48 positively regulates drought tolerance and ABA responses in wheat (Triticum aestivum L.). The Crop Journal, 2020, 9(3): 785-793
[49] Zhang Y R, Zhou J F, Wei F, Song T Q, Yu Y, Yu M, Fan Q R, Yang Y N, Xue G, Zhang X K. Nucleoredoxin gene TaNRX1 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12: 756338
[50] Yu Y G, Zhang L. Overexpression of TaWRKY46 enhances drought tolerance in transgenic wheat. Cereal Research Communications, 2021, 21(4): 1321
[51] Gao H M, Wang Y F, Xu P, Zhang Z B. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018, 9: 997
[52] Zhou Y B, Chen M, Guo J K, Wang Y X, Min D H, Jiang Q Y, Ji H T, Huang C Y, Wei W, Xu H J, Chen X, Li L C, Xu Z S, Cheng X G, Wang C X, Wang C S, Ma Y Z. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 2020, 71(6): 1842-1857
[53] Yu T F, Xu Z S, Guo J K, Wang Y X, Abernathy B, Fu J D, Chen X, Zhou Y B, Chen M, Ye X G, Ma Y Z. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017, 7(1): 44050
[54] Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, 12(4): 468-479
[55] Li P F, Cai J, Luo X, Chang T L, Li J X, Zhao Y W, Xu Y. Transformation of wheat Triticum aestivum with the HvBADH1 transgene from hulless barley improves salinity-stress tolerance. Acta Physiologiae Plantarum, 2019, 41(9): 1-14
[56] Moghaieb R E A, Sharaf A N, Soliman M H, El-Arabi N I, Momtaz O A. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM Crops & Food, 2014, 5(2): 132-138
[57] Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q H, Zhang Y, Feng J L, Sun F S, Sun J T, Yang G X, He G Y. TaASR1‐D confers abiotic stress resistance by affecting ROS accumulation and ABA signaling in transgenic wheat. Plant Biotechnology Journal, 2021, 19(8): 1588-1601
[58] Wei X N, Xu H J, Rong W, Ye X G, Zhang Z Y. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant, Cell & Environment, 2019, 42(5): 1471-1485
[59] Zhou Y B, Liu J, Guo J K, Wang Y X, Ji H T, Chu X S, Xiao K, Qi X L, Hu L, Li H, Hu M Y, Tang W S, Yan J J, Yan H S, Bai X X, Ge L H, Lyu M J, Chen J, Xu Z S, Chen M, Ma Y Z. GmTDN1 improves wheat yields by inducing dual tolerance to both drought and low-N stress. Plant Biotechnology Journal, 2022, 20(8): 1606-1621
[60] Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilizing TaPYL4 receptor in wheat. New Phytologist, 2022, 236(1): 114-131
[61] Mei F M, Chen B, Du L Y, Li S M, Zhu D H, Chen N, Zhang Y F, Li F F, Wang Z X, Cheng X X, Ding L, Kang Z S, Mao H D. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell, 2022, DOI: https://pubmed.ncbi.nlm.nih.gov/35959993/
[62] Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H X, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany, 2019, 70(5): 1497-1511
[63] Liu H, Li H F, Hao C Y, Wang K, Wang Y M, Qin L, An D G, Li T, Zhang X Y. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342
[64] Zhao B, Wu T T, Ma S S, Jiang D J, Bie X M, Sui N, Zhang X S, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal, 2020, 18(2): 513-525
[65] Pena P A, Quach T, Sato S, Ge Z X, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente T E. Expression of the maize Dof1 transcription factor in wheat and sorghum. Frontiers in Plant Science, 2017, 8: 434
[66] Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259(5): 1271-1282
[67] Zhao X Y, Hong P, Wu J Y, Chen X B, Ye X G, Pan Y Y, Wang J, Zhang X S. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiology, 2016, 170(3): 1578-1594
[68] Xie L, Zhang Y, Wang K, Luo X M, Xu D A, Tian X L, Li L L, Ye X G, Xia X C, Li W X, Yan L L, Cao S H. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. The New Phytologist, 2019,231(2): 834-848
[69] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183
[70] Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2022, 8(8): 930-939
[71] Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): 8455
[72] Du X Y, Wei J L, Luo X, Liu Z G, Qian Y Q, Zhu B, Weng Q B, Tang H. Low-molecular-weight glutenin subunit LMW-N13 improves dough quality of transgenic wheat. Food Chemistry, 2020, 327: 127048
[73] Qiu Y L, Chen H Q, Zhang S X, Wang J, Du L P, Wang K, Ye X G. Development of a wheat material with improved bread-making quality by overexpressing HMW-GS 1Slx2.3* from Aegilops longissimi. The Crop Journal, 2022, DOI: https://www.sciencedirect.com/science/article/pii/S2214514122000848
[74] Ma X L, Xue H, Sun J Z, Sajjad M, Wang J, Yang W L, Li X, Zhang A M, Liu D C. Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture. Journal of Cereal Science, 2020, 91(C): 102889
[75] Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y J, Deng P Y, Yuan C H, Ma C, Chen X, Zang M L, Wang Q, Li K X, Chang J L, Wang Y S, Yang G X, He G Y. Enrichment of provitamin a content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. Journal of Experimental Botany, 2014, 65(9): 2545-2556
[76] Liang Q J, Wang K, Liu X L, Bisma R, Jiang L, Wan X, Ye X G, Zhang C Y. Improved folate accumulation in genetically modified maize and wheat. Journal of Experimental Botany, 2019, 70(5): 1539-1551
[77] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51(7): 1106-1112
[78] Paudel B, Zhuang Y B, Galla A, Dahal S, Qiu Y J, Ma A J, Raihan T, Yen Y. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Scientific Reports, 2020, 10(1): 7794
[79] Kan J H, Cai Y, Cheng C Y, Jiang C C, Jin Y L, Yang P. Simultaneous editing of host factor gene TaPDIL5-1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat. The New Phytologist, 2022, 234(2): 340-344
[80] Zhang Y, Liang Z, Zong Y, Wang Y P, Liu J X, Chen K L, Qiu J L, Gao C X. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7(1): 12617
[81] Wang W, Pan Q L, He F, Akhunova A, Chao S, Trick H, Akhunov E. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal, 2018, 1(1): 65-74
[82] Li S N, Lin D X, Zhang Y W, Deng M, Chen Y X, Lv B, Li B S, Lei Y, Wang Y P, Zhao L, Liang Y T, Liu J X, Chen K L, Liu Z Y, Xiao J, Qiu J L, Gao C X. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, DOI: https://pubmed.ncbi.nlm.nih.gov/35140403/
[83] Zhang Y W, Bai Y, Wu G H, Zou S H, Chen Y F, Gao C X, Tang D Z. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 2017, 91(4): 714-724
[84] Zheng M, Lin J C, Liu X B,Chu W, Li J P, Gao Y J, An K X, Song W J, Xin M M, Yao Y Y, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. The Plant Physiology, 2022, 186(4): 1591-1569
[85] Lin J C, Song N, Liu D B, Liu X B, Chu W, Li J P, Chang S M, Liu Z H, Chen Y M, Yang Q, Liu X Y, Yao Y Y, Guo W L, Xin M M, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat. Plant Biotechnology Journal, 2022, 20(9): 1645-1647
[86] Zhang R, Liu J X, Chai Z Z, Chen S, Bai Y, Zong Y, Chen K L, Li J Y, Jiang L J, Gao C X. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480-485
[87] Han H N, Wu Z W, Zheng L, Han J Y, Zhang Y, Li J H, Zhang S J, Li G Y, Ma C L, Wang P P. Generation of a high-efficiency adenine base editor with TadA8e for developing wheat dinitroaniline-resistant germplasm. The Crop Journal, 2022, 10(2): 368-374
[88] Hisano H, Hoffie R E, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2021, 20(1): 37-46
[89] Chen Z Y, Ke W S, He F, Chai L L, Cheng X J, Xu H W, Wang X B, Du D J, Zhao Y D, Chen X Y, Xing J W, Xin M M, Guo W L, Hu Z R, Su Z Q, Liu J, Peng H R, Yao Y Y, Sun Q X, Ni Z F. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2022, 20(5): 920-933
[90] Wang W, Pan Q L, Tian B, He F, Chen Y Y, Bai G H, Akhunova A, Trick H N, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. The Plant Journal, 2019, 100(2): 251-264
[91] Zhang J H, Zhang H T, Li S Y, Li J Y, Yan L, Xia L Q. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. Journal of Integrative Plant Biology, 2021, 63(9): 1649-1663
[92] Ouyang X, Hong X, Zhao X Q, Zhang W, He X, Ma W Y, Teng W, Tong Y P. Knock out of the PHOSPHATE2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Scientific Reports, 2016, 6(1): 29850
[93] Ibrahim S, Saleem B, Rehman N, Zafar S A, Naeem M K, Khan M R. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. Journal of Advanced Research, 2022, 37: 33-41
[94] Luo G B, Shen L S, Song Y H, Yu K, Ji J J, Zhang C, Yang W L, Li X, Sun J Z, Zhan K H, Cui D Q, Wang Y P, Gao C X, Liu D C, Zhang A M. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19(9): 1863-1877
[95] Gao Y J, An K X, Guo W W, Chen Y M, Zhang R J, Zhang X, Chang S Y, Rossi V, Jin F M, Cao X Y, Xin M M, Peng H R, Hu Z R, Guo W L, Du J K, Ni Z F, Sun Q X, Yao Y Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell, 2021, 33(3): 603-622
[96] Sánchez-León S, Gil-Humanes J, Ozuna C V, Giménez M J, Sousa C, Voytas D F, Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902-910
[97] Jouanin A, Gilissen L J W J, Schaart J G, Leigh F J, Cockram J, Wallington E J, Boyd L A, van den Broeck H C, van der Meer I M, America A H P, Visser R G F, Smulders M J M. CRISPR/Cas9 gene editing of gluten in wheat to reduce gluten content and exposure-reviewing methods to screen for coeliac safety. Frontiers in Nutrition, 2020, 7: 51
[98] Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S. CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Frontiers in Sustainable Food Systems, 2020, 4: 104
[99] Raffan S, Sparks C, Huttly A, Hyde L, Martignago D, Mead A, Hanley S J, Wilkinson P A, Barker G, Edwards K J, Curtis T Y, Usher S, Kosik O, Halford N G. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnology Journal, 2021, 19(8): 1602-1613
[100] Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh N S, Tucker E J, Baumann U, Langridge P, Whitford R. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 2019, 17(10): 1905-1913
[101] Singh M, Kumar M, Albertsen M C, Young J K, Cigan A M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Molecular Biology, 2018, 97(4-5): 371-383
[102] Tang H L, Liu H Y, Zhou Y, Liu H W, Du L P, Wang K, Ye X G. Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnology Journal, 2020, 19(2): 224-226
[103] Liu C X, Zhong Y, Qi X L, Chen M, Liu Z K, Chen C, Tian X L, Li J L, Jiao Y Y, Wang D, Wang Y W, Li M R, Xin M M, Liu W X, Jin W W, Chen S J. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnology Journal, 2020, 18(2): 316-318
[104] Lv J, Yu K, Wei J, Gui H P, Liu C X, Liang D W, Wang Y L, Zhou H J, Carlin R, Rich R, Lu T C, Que Q D, Wang W C, Zhang X P, Kelliher T. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology, 2020, 38(12): 1397-1401
[105] Liang X N, Bie X M, Qiu Y L, Wang K, Yang Z J, Jia Y Q, Xu Z Y, Yu M, Du L P, Lin Z S, Ye X G. Development of powdery mildew resistant derivatives of wheat variety Fielder for use in genetic transformation. The Crop Journal, 2022, DOI: http://www.sciencedirect.com/science/article/pii/S221451412200160X
[106]陈海强, 刘会云, 王轲, 张双喜, 叶兴国. 植物单倍体诱导技术发展与创新. 遗传, 2020, 42(5): 466-482Chen H Q, Liu H Y, Wang K, Zhang S X, Ye X G. Development and innovation of haploid induction technologies in plants. Hereditas (Beijing), 2020, 42(5): 466-482
[107] Kelliher T, Starr D, Su X J, Tang G Z, Chen Z Y, Carter J, Wittich P E, Dong S J, Green J, Burch E, McCuiston J, Gu W N, Sun Y J, Strebe T, Roberts J, Bate N J, Que Q D. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292
[108] Budhagatapalli N, Halbach T, Hiekel S, Büchner H, Müller A E, Kumlehn J. Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnology Journal, 2020, 18(12): 2376-2378

Funding

Foundation project: National Natural Science Foundation of China (31971945)
Share on Mendeley
PDF(926 KB)

Collection(s)

Triticum aestivum L.

188

Accesses

0

Citation

Detail

Sections
Recommended

/