Association Analysis of Soybean DELLA Gene Haplotypes withFlowering Time and Identification of Their Gene-editing Target Sites

HE Mi-lan,LI Hai-yang,HUANG Ze-rong,KONG Fan-jiang and ZHAO Xiao-hui

PDF(65954 KB)
PDF(65954 KB)
Journal of Plant Genetic Resources ›› 2022, Vol. 23 ›› Issue (3) : 787-799. DOI: 10.13430/j.cnki.jpgr.20211218001
Research Articles

Association Analysis of Soybean DELLA Gene Haplotypes withFlowering Time and Identification of Their Gene-editing Target Sites

  • HE Mi-lan, LI Hai-yang, HUANG Ze-rong, KONG Fan-jiang, ZHAO Xiao-hui
Author information +
History +

Abstract

DELLA proteins are known as negative regulators of gibberellin involved in plant flowering. Eight DELLA genes were identified in soybean genome by sequence alignment with Arabidopsis thaliana(L.) Heynh. DELLA orthologs GmGAI3a has only one GRAS domain,and the other seven DELLA proteins have both DELLA domain and GRAS domain. By performing gene-based association analysis of flowering time in natural population,soybean DELLA haplotypes associating with early-flowering have been detected in soybean accessions collected from the middle and high latitude of China,speculating DELLA genes as negative factors in regulating flowering. CRISPR/Cas9-based editing in soybean hairy root system revealed the editing efficiency at the target sites. Identification of the CRISPR/Cas9 targets of seven DELLA genes provided references for generating stable transgenic DELLA mutants for deciphering their biological functions.

Key words

soybean;DELLA;haplotype;association analysis of flowering time;CRISPR/Cas9

Cite this article

Download Citations
HE Mi-lan,LI Hai-yang,HUANG Ze-rong,KONG Fan-jiang and ZHAO Xiao-hui. Association Analysis of Soybean DELLA Gene Haplotypes withFlowering Time and Identification of Their Gene-editing Target Sites. Journal of Plant Genetic Resources. 2022, 23(3): 787-799 https://doi.org/10.13430/j.cnki.jpgr.20211218001

References

[1]Graham P H and Vance C P. Legumes: Importance and Constraints to Greater Use. Plant Physiology, 2003, 131(3) : 872-877.
[2]Li Y H, Guan R X, Liu Z X, Ma Y S, Wang L X, Li L H, Lin F Y, Luan W J, Chen P Y, Yan Z, Guan Y, Zhu L, Ning X C, Smulders M J M, Li W, Piao R H, Cui Y H, Yu Z M, Guan M, Chang R Z, Hou A F, Shi A N, Zhang B, Zhu S L, Qiu L J. Genetic structure and diversity of cultivated soybean [Glycine max (L.) Merr.] landraces in China. Theoretical and Applied Genetics, 2008, 117(6) : 857-871.
[3]Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D, Benfey P N. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROWLIKE genes. The Plant Journal, 1999, 18: 111–119.
[4]Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683–692.
[5]Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thoma S G. Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 2006, 18(12) : 3399-3414.
[6]Masatoshi N, Asako S, Yoshiyuki T, Young C K, Seung H P, Miyako U T, Hiroyuki S, Etsuko K, Satoshi I, Masatomo K, Tatsuya M, Makoto M, Isomaro Y. Identification and characterization of Arabidopsis gibberellin receptors. The Plant Journal, 2006, 46(5) : 880-889.
[7]Richards D E, King K E, Tahar A A, Harberd N P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology & Plant Molecular Biology, 2001, 52 (52) : 67-88.
[8]Kohji M, Yoshinori H, Tai P S, Toshio H. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature: International weekly journal of science, 2008, 456(7221) : 459-463.
[9]Davière J M and Achard P. Gibberellin signaling in plants. Development:Cambridge, England, 2013, 140(6) : 1147-1151.
[10]Dill A and Sun T P. Synergistic de-repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 2001, 159(2) : 777-785.
[11]King K E, Moritz T, Harberd N P. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics, 2001, 159(2) : 767-776.
[12]Lee S, Cheng H, King K E, Wang W, He Y, Hussain A, Lo J, Harberd N P, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes & Development, 2002, 16(5) : 646-658 .
[13]Tyler L, Thomas S G, Hu J, Dill A, Alonso J M, Ecker J R, Sun T P. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiolgy, 2004, 135(2) : 1008-1019.
[14][14]Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D, Luo D, Harberd N P, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development (Cambridge, England), 2004, 131(5) : 1055-1064.
[15]Foster T, Kirk T, Jones W T, Allan A C, Espley R, Karunairetnam S, Rakonjac J. Characterisation of the DELLA subfamily in apple (Malus x domestica Borkh.). Tree Genetics & Genomes, 2007,3(3) : 187-197.
[16]An J, Hou J, Li C, Wang C X, Xia H, Zhao C Z, Li C S, Zheng Y X, Zhao Y X, Wang X J. Cloning and expression analysis of four DELLA genes in peanut. Russian Journal of Plant Physiology, 2015, 62(1) : 116-126.
[17]Hu M Y, Luo M, Xiao Y H, Li X B, Tan K L, Hou L, Dong J, Li D M,Song S Q, Zhao J, Zang Z L,Li B L, Pei Y. Brassinosteroids and Auxin Down-Regulate DELLA Genes in Fiber Initiation and Elongation of Cotton. Agricultural Sciences in China , 2011, 10(08) : 1168-1176.
[18]Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C E, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J L, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52(4) : 428-436.
[19]S Livne, V S Lor, I Nir, N Eliaz, A Aharoni, N E Olszewski, Y Eshed, D Weiss, Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. The Plant Cell, 2015, 27(6) : 1579–1594.
[20]Yamaguchi N, Winter C M, Wu M, Kanno Y, Yamaguchi A, Seo M, Wagner D. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science, 2014, 344(6184) : 638?641.
[21]Yu S, Galv?o V C, Zhang Y C, Horrer D, Zhang T Q, Hao Y H, Feng Y Q, Wang S, Schmid M, Wang J W. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. The Plant Cell, 2012, 24(8) : 3320?3332.
[22]Yan J D, Li X M, Zeng B J, Zhong M, Yang J X, Yang P, Li X, He C S, Lin J Z, Liu X M, Zhao X Y. FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(11) : 1717-1740.
[23]Li Y,?Wang H P, Li X L,?Liang G, Yu D Q. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. Journal of experimental botany, 2017, 68(11) : 2757-2767.
[24]Li M Z, An F Y, Li W Y, Ma M D, Feng Y, Zhang X, Guo H W. DELLA proteins interact with FLC to repress flowering transition. Journal of integrative plant biology, 2016, 58(7) : 642-655.
[25]Achard P, Baghour M, Chapple A, Hedden P, Straeten D V D, Genschik P, Moritz T, Harberd N P. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes, Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(15) : 6484-6489.
[26]Bao S J, Hua C G, Shen L S, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1) : 118-131.
[27]Chen K and Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Reports, 2014, 33(4) : 575-583.
[28]Marciniak K and Przedniczek K. Gibberellin signaling repressor LlDELLA1 controls the flower and pod development of yellow lupine (lupinus luteus L.).?International Journal of Molecular Sciences,?2020, 21(5), 1815.
[29]侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019, 45(06): 839-847.
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agronomica Sinica, 2019, 45(06) : 839–847 (in Chinese with English abstract).
[30]曾栋昌,马兴亮,谢先荣,祝钦泷,刘耀光. 植物CRISPR/Cas9多基因编辑载构建和突变分析的操作方法. 中国科学: 生命科学, 2018, 48(07):783-794.
Zeng D C, Ma X L, Xie X R , Zhu Q L , Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants, Scientia Sinica: Vitae, 2018, 48(07) : 783–794 (in Chinese with English abstract).
[31]Jin Y, Liu H, Luo D X, Yu N, Dong W T, Wang C, Zhang X W, Dai H L, Yang J, Wang E T. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016, 7(1) : 119-144.
[32]Silverstone A L, Ciampaglio C N, Sun T P. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 1998, 10(2) : 155-169.
[33]Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M,?Flintham J E,?Beales J,?Fish L J,?Worland A J,?Pelica F,?Sudhakar D,?Christou P,?Snape J W,?Gale M D,?Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741) : 256-261.
[34]Dong L D, Fang C, Cheng Q, Su T, Kou K, Kong L P, Zhang C B, Li H Y, Hou Z H, Zhang Y H, Chen L Y, Yue L, Wang L S, Wang K, Li Y L, Gan Z R, Yuan X H, Weller J L, Lu S J, Kong F J, Liu B H. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature communications, 2021, 12(1) : 5445-5445.

Funding

National Natural Science Foundation of China (32072013)
Share on Mendeley
PDF(65954 KB)

Accesses

Citation

Detail

Sections
Recommended

/