Functional Analysis of a small GTP-binding Protein Gene GhROP4 in Drought Resistance of Cotton(Gossypium hirsutum L.)

HU Zi-yao,ZHANG Lang-rang,HUANG Hui-ying,LEI Jian-feng,MADINA Mulati,DENG Jia-hui,SUN Ling,LIU Min,XU Shi-jia and LI Yue

PDF(7523 KB)
PDF(7523 KB)
Journal of Plant Genetic Resources ›› 2022, Vol. 23 ›› Issue (2) : 614-623. DOI: 10.13430/j.cnki.jpgr.20211031001
Research Articles

Functional Analysis of a small GTP-binding Protein Gene GhROP4 in Drought Resistance of Cotton(Gossypium hirsutum L.)

  • HU Zi-yao1, ZHANG Lang-rang2, HUANG Hui-ying1, LEI Jian-feng2, MADINA Mulati2, DENG Jia-hui1, SUN Ling2, LIU Min1, XU Shi-jia2, LI Yue1
Author information +
History +

Abstract

Drought is the primary abiotic factor that affects the yield and quality of cotton fiber. ROP (Rho-realted GTPases from plants)protein is a type of plant-specific Rho small G proteins,and in plants this protein plays a role in responses to the development and various stresses. In this study,real-time quantitative polymerase chain reaction(qRT-PCR)was used to analyze the expression pattern of the GhROP4 gene under drought stress and exogenous abscisic acid(ABA)treatment conditions. Virus-induced gene silencing(VIGS) technology was used to analyze the regulation mode of the GhROP4 gene on drought and the possible regulatory pathways involved. Drought and abscisic acid treatment increased the transcription level of GhROP4 gene as a whole,and silencing GhROP4 gene enhanced the drought resistance of cotton. The water loss rate and relative water content,proline(Pro,Proline)content,and activities of three antioxidant enzymes:catalase(CAT), superoxide dismutase(SOD),and peroxidase(POD)of the detached leaves of the silent plants after drought stress were significantly higher than those of the negative control. The contents of hydrogen peroxide(H2O2)and malondialdehyde(MDA)were significantly lower than those of the negative control;compared with the negative control,ABA synthesis and pathway gene expression in the leaves of silent plants were significantly up-regulated. Altogether,our results supported that the GhROP4 gene was a negative regulator in drought resistance of cotton through negatively regulating the ABA metabolic pathway

Key words

cotton;drought;GhROP4;virus-induced gene silencing(VIGS);abscisic acid

Cite this article

Download Citations
HU Zi-yao,ZHANG Lang-rang,HUANG Hui-ying,LEI Jian-feng,MADINA Mulati,DENG Jia-hui,SUN Ling,LIU Min,XU Shi-jia and LI Yue. Functional Analysis of a small GTP-binding Protein Gene GhROP4 in Drought Resistance of Cotton(Gossypium hirsutum L.). Journal of Plant Genetic Resources. 2022, 23(2): 614-623 https://doi.org/10.13430/j.cnki.jpgr.20211031001

References

喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016, 49(18): 3465-3476.
Yu S X, Fan S L, Wang H T, Wei H L, Pang Z Y. Progresses in Research on Cotton High Yield Breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476.
乔铁军, 董俊哲, 郑丽莎, 王铭, 魏玲玲, 耿向阳, 曲京武, 孙宁. USDA关于2015-2024年世界棉花行情的长期展望. 国际纺织导报, 2016, 44(1): 13-17.
Qiao T J, Dong J Z, Zheng L S, Wang M, Wei L L, Geng X Y, Qu J W, Sung N. USDA long-term outlook for world co USDA long-term outlook for world cotton market from 2015 to 2024. Melliand China, 2016, 44(1): 13-17.
Abdelraheem A, Nardana E, Mary O C, Zhang J F. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops Products, 2019, 130: 118-129.
Assmann S M. Heterotrimeric and Unconventional GTP Binding Proteins in Plant Cell Signaling. The Plant Cell, 2002, 14: s355-s373.
Eliá? M, Klime? V. Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods in molecular biology, 2012, 827: 13-34.
Berken A, Wittinghofer A. Structure and function of Rho-type molecular switches in plants. Plant Physiology and Biochemistry, 2008, 46(3): 380-393.
Rivero C, Traubenik S, Zanetti M E, Blanco F A. Small GTPases in plant biotic interactions. Small GTPases, 2019, 10(5): 350-360.
王钰静. GhROP6在棉花抗黄萎病中的功能研究. 武汉: 华中农业大学, 2017.
Wang Y J. Functional analysis of GhROP6 in cotton responsive to Verticillium dahliae. Wuhan: Huazhong Agricultural University, 2017.
Yang Z, Liu J J, Luo L, Ye S, Yang Y Z, Zhang G H, Wang X P, Zhang J M. The Cotton GhRac6 Gene Encoding a Plant ROP/RAC Protein Improves the Plant Defense Response to Aphid Feeding. Springer US, 2018, 36(5): 888-896.
胡子曜, 代培红, 刘超, 玛迪娜.木拉提, 王倩, 吾尕力汗.阿不都维力, 赵燚, 孙玲, 徐诗佳, 李月. 陆地棉小GTP结合蛋白基因GhROP3的克隆、表达及VIGS载体的构建. 生物技术通报, 2021, 37(9): 106-113.
Hu Z Y, Dai P H, Liu C, Madina M, Wang Q, Wugalihan A, Zhao Y, Sun L, Xu S J, Li Y. Molecular Cloning,Expression and VIGS Construction of a Small GTP-binding Protein Gene GhROP3 in Gossypium hirsutum. Biotechnology Bulletin, 2021, 37(9): 106-113.
李月, 吾尕力汗.阿不都维力, 周垚均, 刘超, 任艳萍, 郭旺珍, 刘晓东. 陆地棉小GTP结合蛋白基因GhRop4的克隆及其表达分析. 棉花学报, 2020, 32(1): 21-29.
Li Y, Wugalihan A, Zhou Y J, Liu C, Ren Y P, Guo W Z, Liu X D. Molecular Cloning and Expression Analysis of a small GTP-binding Protein Gene GhRop4 in Gossypium hirsutum L. Cotton Science, 2020, 32(1): 21-29.
周垚均, 任艳萍, 代培红, 刘超, 刘晓东, 李月. 棉花四个C2H2锌指蛋白基因的克隆与表达分析. 分子植物育种, 2021, 19(13): 4216-4223.
Zhou Y J, Ren Y P, Dai P H, Liu C, Liu X D, Li Y. Cloning and Expression Analysis of Four C2H2 Zinc Protein Gene in Cotton (Gossypium hirsutum L.). Molecular Plant Breeding, 2021, 19(13): 4216-4223.
Ni Z Y, Liu N, Yu Y H, Bi C X, Chen Q J, Qu Y Y. The cotton 70-kDa heat shock protein GhHSP70-26 plays a positive role in the drought stress response. Environmental and Experimental Botany, 2021, 191: 104628.
袁伟, 万红建, 杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择. 植物学报, 2012, 47(4): 427-436.
Yuan W, Wang H J, Yang Y J. Characterization and Selection of Reference Genes for Real-time Quantitative RT-PCR of Plants. Chinese Bulletin of Botany, 2012, 47(4): 427-436.
李秀青, 李月, 刘超, 代培红, 刘晓东. 棉花黄萎病相关基因GhAAT的克隆与功能鉴定. 分子植物育种, 2020, 18(4): 1048-1053.
Li X Q, Li Y, Liu C, Dai P H, Liu X D. Cloning and Functional Identification of Cotton Verticillium wilt Related Gene GhAAT. Molecular Plant Breeding, 2012, 47(4): 427-436.
Li C Y, Kong X Q, Luo Z, Li W J, Tang W, Zhang D M, Ma C L, Dong H Z. Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress. Acta Physiologiae Plantarum, 2021, 43(2): 1-10.
Liang C Z, Meng Z H, Meng Z G, Malik W, Yan R, Lwin K M, Lin F Z, Wang Y, Sun G Q, Zhou T, Zhu T, Li J Y, Jin S X, Guo S D, Zhang R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific reports, 2016, 6(1): 247-273.
Wang X Y, Chen B Z, Ma C K, Qiao K K, Li Z S, Wang J S, Peng R H, Fan S L, Ma Q F. Systematical characterization of YUCCA gene family in five cotton species, and potential functions of YUCCA22 gene in drought resistance of cotton. Industrial Crops Products, 2021, 162: 113290.
郭艳芹, 王茹茹, 常欢欢. 基于区域竞争力视角的中国棉花产区产业竞争力研究. 棉花科学, 2021, 43(4): 32-40.
Guo Y Q, Wang R R, Chang H H. Research on the Industrial Competitiveness of China’s Cotton Production Area Based on the Perspective of Regional Competitiveness. Cotton Sciences, 2021, 43(4): 32-40.
胡文峰, 陈玲玲, 姚俊强, 季淑媛, 孙宁. 气候变化背景下新疆气温和降水时空演变特征分析. 阜阳师范学院学报(自然科学版), 2020, 37(3): 90-95.
Hu W F, Chen L L, Yao J Q, Ji S Y, Sun N. Analysis of the temporal and spatial evolution of temperature and precipitation in Xinjiang under the background of climate change. Journal of Fuyang Normal University(Natural Science), 2020, 37(3): 90-95.
Hugouvieux V, Kwak J M, Schroeder J I. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell, 2001, 106(4): 477-487.
Hugouvieux V, Murata Y, Young J J, Kwak J M, Mackesy D Z, Schroeder J I. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiology, 2002, 130(3): 1276-1287.
雷建峰, 徐新霞, 李月, 代培红, 刘超, 刘晓东. CRISPR/Cas9介导靶向敲除拟南芥GGB基因突变体的鉴定. 西北植物学报, 2016, 36(5): 857-864.
Lei J F. Xu X X, Li Y, Dai P H, Liu C, Liu X D. Identification of GGB Mutant Caused by CRISPR/Cas9 in Arabidopsis. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(5): 857-864.
Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Cold Spring Harbor Laboratory Press, 2009, 23(15): 1805-1817.
Gelvin S B. The introduction and expression of transgenes in plants. Current Opinion in Biotechnology, 1998, 9(2): 227-232.
Yang S J, Barbara V, Wan J X, Huang Y F. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 2010, 3(3): 469-490.
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and Functions of ROP GTPases in Plant-Microbe Interactions. Cells, 2020, 9(9): 2016.
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. Plant Physiology, 2018, 176(1): 57-79.
Jin W W, Xu C J, Li X, Zhang B, Wang P, Allan A C, Chen K S. Expression of ROP/RAC GTPase genes in postharvest loquat in association with senescence and cold regulated lignification. Postharvest Biology and Technology, 2009, 54(1): 9-14.
李先碧, 肖月华, 罗明, 侯磊, 李德谋, 罗小英, 裴炎. 两个棉花Rac蛋白基因的克隆与表达分析. 遗传学报, 2005(1): 72-78.
Li X B, Xiao Y H, Luo M, Hou L, Li D M, Luo X Y, Pei Y. Cloning and Expression Analysis of Two Rac Genes from Cotton (Gossypiunn hirsutum L.). Acta Genetica Sinica, 2005(1): 72-78.
Delmer D P, Pear J R, Andrawis A, Stalker D M. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Molecular and General Genetics (MGG), 1995, 248(1): 43-51.
Kim H J, Triplett B A. Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers. Biochimica et Biophysica Acta, 2004, 1679(3): 214-221.
胡鹏伟, 黄桃鹏, 李媚娟, 王睿, 李玲. 脱落酸的生物合成和信号调控进展. 生命科学, 2015, 27(9): 1193-1196.
Hu P W, Huang T P, Li M J, Wang R, Li L. Research progress on abscisic acid biosynthesis and signaling regulation. Chinese Bulletin of Life Sciences, 2015, 27(9): 1193-1196.
Chen K, Li G J, Bressan R A, Song C P, Zhu J K Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54.
Lee H G, Seo P J. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun, 2019, 10(1): 161-679.
Lemichez E, Wu Y, Sanchez J P, Mettouchi A, Mathur J, Chua N H. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev, 2001, 15(14): 1808-1816.
Li H, Shen J J, Zheng Z L, Lin Y K, Yang Z B. The Rop GTPase Switch Controls Multiple Developmental Processes in Arabidopsis. Plant Physiology, 2001, 126(2): 670-684.
Zheng L Z, Yang Z B. The Rop GTPase: an emerging signaling switch in plants. Plant Molecular Biology, 2000, 44(1): 1-9.
Li Z X, Kang J, Sui N, Liu D. ROP11 GTPase is a Negative Regulator of Multiple ABA Responses in Arabidopsis. Journal of Integrative Plant Biology, 2012, 54(3): 169-179.

Funding

National Natural Science Foundation of China(31560534)
Share on Mendeley
PDF(7523 KB)

Collection(s)

Rice

Accesses

Citation

Detail

Sections
Recommended

/