Creating Novel Glutinous Rice Germplasms by EditingWx Gene via CRISPR/Cas9 Technology

HUANG Li-chun,GU Zheng-wen,TAN Hong-yan,ZHAO Wei,XIAO Ying,CHU Rui,FAN Xiao-lei,ZHANG Chang-quan,LI Qian-feng and LIU Qiao-quan

PDF(19131 KB)
PDF(19131 KB)
Journal of Plant Genetic Resources ›› 2021, Vol. 22 ›› Issue (3) : 789-799. DOI: 10.13430/j.cnki.jpgr.20210104003
Research Articles

Creating Novel Glutinous Rice Germplasms by EditingWx Gene via CRISPR/Cas9 Technology

  • HUANG Li-chun, GU Zheng-wen, TAN Hong-yan, ZHAO Wei, XIAO Ying, CHU Rui, FAN Xiao-lei, ZHANG Chang-quan, LI Qian-feng, LIU Qiao-quan
Author information +
History +

Abstract

The Wx gene,which controls the synthesis of amylose in rice endosperm,is the major gene that determines rice eating and cooking quality(ECQ). It can significantly improve rice ECQ by moderately reducing amylose content(AC)of endosperm. Editing the C-terminal of Wx encoded GBSSI enzyme to fine-tune its enzyme activity and grain AC is expected to further improve rice ECQ. By analyzing the functional domain of GBSSI through bioinformatics websites,two target sites,T1 and T2(located in the 12th and 13th exons of the Wx gene,respectively),were subjected for CRISPR/Cas9-medicated editing. The homozygous mutants were validated by PCR and Sanger sequencing,followed by quantifying the apparent amylose content,gel-permation chromatography,western blot and qRT-PCR. A total of 8 homozygous lines,C1-C8,with retained major domains of GBSSI were obtained. Among which,the 518-550/551 codons were shifted in the predicted protein in C2 and C3 lines and the predicted protein in C1,C4-C8 were shifted after codon 551,517 or 518. The apparent amylose content of C1-C8 was significantly reduced from 16.79% to 4.44%-3.69%,but significantly higher than that of near-isogenic line(NIL)carrying the conventional wx allele(AAC=2.92%). GPC results showed that there was no amylose synthesis in the selected mutants,but their chain length distribution of Ap2 was longer than that in NIL wx. The qRT-PCR and western blot suggested no significant difference on transcript of Wx gene but obvious reduction of GBSSI accumulation in the developing seeds in mutants. No GBSSI accumulation was detected in all the homozygous lines except for C2 and C3. As a result,this study generated glutinous rice lines with fine-tuned starch fine structure to conventional glutinous rice by CRISPR strategy,and provided evidence of the 518-551 amino acids on the formation of GBSSI enzyme activity. These results provide a reference for further analyzing the structure of GBSSI protein to achieve its precise editing.

Key words

Oryza sativa L.;Wx gene;GBSSI;amylose content;CRISPR/Cas9

Cite this article

Download Citations
HUANG Li-chun,GU Zheng-wen,TAN Hong-yan,ZHAO Wei,XIAO Ying,CHU Rui,FAN Xiao-lei,ZHANG Chang-quan,LI Qian-feng and LIU Qiao-quan. Creating Novel Glutinous Rice Germplasms by EditingWx Gene via CRISPR/Cas9 Technology. Journal of Plant Genetic Resources. 2021, 22(3): 789-799 https://doi.org/10.13430/j.cnki.jpgr.20210104003

References

[1] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016, 49(22): 4267-4283.Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
[2] Huang L, Sreenivasulu N, Liu Q. Waxy editing: old meets new. Trends in Plant Science, 2020, 25(10): 963-966.
[3] Wang Z, Wu Z, Xing Y, Zheng F, Guo X, Zhang W, Hong M. Nucleotide sequence of rice Waxy gene. Nucleic Acids Research, 1990, 18(19): 5898-5898.
[4] Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765.
[5] Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. Wxlv, the ancestral allele of rice Waxy gene. Molecular Plant, 2019, 12(8): 1157-1166.
[6] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29(04): 431-438.Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding. Chinese Journal of Rice Science, 2015, 29(04): 431-438.
[7] Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A. Duplicated coding sequence in the waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Science, 2003, 165(6): 1193-1199.
[8] 周正平, 占小登, 沈希宏, 曹立勇. 我国水稻育种发展现状、展望及对策. 中国稻米, 2019, 25(05): 1-4.Zhou Z P, Zhan X D, Shen X H, Cao L Y. Current status, prospection and countermeasure of rice breeding in China. China Rice, 2019, 25(05): 1-4.
[9] Yang J, Wang J, Fan F, Zhu J, Chen T, Wang C, Zheng T, Zhang J, Zhong W, Xu J. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in Milky Princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breeding, 2013, 132(6): 595-603.
[10] Liu L, Ma X, Liu S, Zhu C, Jiang L, Wang Y, Shen Y, Ren Y, Dong H, Chen L. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Plant Molecular Biology, 2009, 71(6): 609-626.
[11] 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wx-mp在部分粳稻品种资源中的分布. 植物遗传资源学报, 2019, 20(04): 975-981.Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J. The distribution of low amylose content allele Wx-mp in japonica rice. Journal of Plant Genetic Resources, 2019, 20(04): 975-981.
[12] Zhou H, Xia D, Zhao D, Li Y, Li P, Wu B, Gao G, Zhang Q, Wang G, Xiao J, Li X, Yu S, Lian X, He Y. The origin of Wxla provides new insights into the improvement of grain quality in rice. Journal of Integrative Plant Biology, 2020, doi.org/10.1111/jipb.13011.
[13] Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, Lu Y, Li Q, Fan X, Tang S, Gu M, Liu Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency. Journal of Integrative Plant Biology, 2020, doi.org/10.1111/jipb.13010.
[14] Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49.
[15] Shimada H, Tada Y, Kawasaki T, Fujimura T. Antisense regulation of the rice Waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theoretical and Applied Genetics, 1993, 86(6): 665-672.
[16] Terada R, Nakajima M, Isshiki M, Okagaki R J, Wessler S R, Shimamoto K. Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant and Cell Physiology, 2000, 41(7): 881-888.
[17] Liu Q, Wang X, Chen X, Wang Z, Tang S, Hong M, Gu M. Effect of dominant waxy character on kernel weight in transgenic rice with antisense Wx gene. Scientia Agricultura Sinica, 2002, 35(02): 117-122.
[18] Liu Q, Wang Z, Chen X, Cai X, Tang S, Yu H, Zhang J, Hong M, Gu M. Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality. Transgenic Research, 2003, 12(1): 71-82.
[19] Liu Q, Yu H, Chen X, Cai X, Tang S, Wang Z, Gu M. Field performance of transgenic indica hybrid rice with improved cooking and eating quality by down-regulation of Wx gene expression. Molecular Breeding, 2005, 16(3): 199-208.
[20] Yu H, Liu Q, Xu L, Lu M, Yang X, Gong Z, Cai X, Zhang Y, Zhang C, Wang Z, Gu M. Quality characteristics and field performance of selectable marker-free transgenic rice with antisense Wx gene and improved quality derived from the elite parents of hybrid indica rice. Journal of Cereal Science, 2009, 50(3): 370-375.
[21] Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Efficient gene targeting by homologous recombination in rice. Nature Biotechnology, 2002, 20(10): 1030-1034.
[22] Itoh K, Ozaki H, Okada K, Hori H, Takeda Y, Mitsui T. Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant and Cell Physiology, 2003, 44(5): 473-480.
[23] 李加瑞, 赵伟, 李全梓, 叶兴国, 安宝燕, 李祥, 张宪省. Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降. 遗传学报, 2005, 32(08): 846-854.Li J R, Zhao W, Li Q Z, et al. RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genetica Sinica, 2005, 32(08): 846-854.
[24] Zhao S, Dufour D, Sánchez T, Ceballos H, Zhang P. Development of waxy cassava with different biological and physico-chemical characteristics of starches for industrial applications. Biotechnology and Bioengineering, 2011, 108(8): 1925-1935.
[25] Brummell D A, Watson L M, Zhou J, McKenzie M J, Hallett I C, Simmons L, Carpenter M, Timmerman-Vaughan G M. Overexpression of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber. BMC Biotechnology, 2015, 15(1): 28.
[26] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
[27] Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385): 331-338.
[28] Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70(1): 667-697.
[29] Rodríguez-Leal D, Lemmon Z H, Man J, Bartlett M E, Lippman Z B. Engineering quantitative trait variation for crop improvement by genome editing. Cell, 2017, 171(2): 470-480.e478.
[30] Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, Wang D, Gao C. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36(9): 894-898.
[31] Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J L, Wang D, Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35(5): 438.
[32] Zhu H, Li C, Gao C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21(11): 661-677.
[33] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
[34] Bull S E, Seung D, Chanez C, Mehta D, Kuon J E, Truernit E, Hochmuth A, Zurkirchen I, Zeeman S C, Gruissem W, Vanderschuren H. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances, 2018, 4(9): eaat6086-eaat6086.
[35] Zhang J, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology, 2018, 60(5): 369-375.
[36] Gao H, Gadlage M J, Lafitte H R, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C, Wang L, Young J K, Beatty M, Dahlke B, Hazebroek J, Greene T W, Cigan A M, Chilcoat N D, Meeley R B. Superior field performance of waxy corn engineered using CRISPR–Cas9. Nature Biotechnology, 2020, 38(5): 579-581.
[37] Zhong Y, Blennow A, Kofoed-Enevoldsen O, Jiang D, Hebelstrup K H. Protein Targeting to Starch 1 is essential for starchy endosperm development in barley. Journal of Experimental Botany, 2018, 70(2): 485-496.
[38] Zhang S, Zhang R, Song G, Gao J, Li W, Han X, Chen M, Li Y, Li G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biology, 2018, 18(1): 302.
[39] 汪秉琨, 张慧, 洪汝科, 张锦文, 杨睿, 罗琼, 曾千春. CRISPR/Cas9系统编辑水稻Wx基因. 中国水稻科学, 2018, 32(01): 35-42.Wang B K, Zhang H, Hong R K, Zhang J W, Yang R, Zeng Q C. Wx gene editing via CRISPR/Cas9 system in rice. Chinese Journal of Rice Science, 2018, 32(01): 35-42.
[40] Huang L, Li Q, Zhang C, Chu R, Gu Z, Tan H, Zhao D, Fan X, Liu Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18(11): 2164-2166.
[41] Zeng D, Liu T, Ma X, Wang B, Zheng Z, Zhang Y, Xie X, Yang B, Zhao Z, Zhu Q, Liu Y. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnology Journal, 2020, doi: 10.1111/pbi.13427.
[42] Xu Y, Lin Q, Li X, Wang F, Chen Z, Wang J, Li W, Fan F, Tao Y, Jiang Y, Wei X, Zhang R, Zhu Q, Bu Q, Yang J, Gao C. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal, 2020, doi: 10.1111/pbi.13433.
[43] Wang C, Shen L, Fu Y, Yan C, Wang K. A simple CRISPR/Cas9 system for multiplex genome editing in rice. Journal of Genetics and Genomics, 2015, 42(12): 703-706.
[44] Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y. CRISPR-GE: a convenient software toolkit forSCRISPR-based genome editing. Molecular Plant, 2017, 10(9): 1246-1249.
[45] 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪. 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998, 24(03): 3-5.Liu Q Q, Zhang J L, Wang Z Y, Hong M M. A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice (Oryza sativa L.). Acta Photophysiologica Sinica, 1998, 24(03): 3-5.
[46] Steiner J J, Polemba C J, Fjellstrom R G, Elliott L F. A rapid one-tube genomic DNA extraction process for PCR and RAPD analyses. Nucleic Acids Research, 1995, 23(13): 2569-2570.
[47] Liu W, Xie X, Ma X, Li J, Chen J, Liu Y. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 2015, 8(9): 1431-1433.
[48] Li Q F, Huang L C, Chu R, Li J, Jiang M Y, Zhang C Q, Fan X L, Yu H X, Gu M H, Liu Q Q. Down-regulation of SSSII-2 gene expression results in novel low-amylose rice with soft, transparent grains. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9750-9760.
[49] Momma M, Fujimoto Z. Interdomain disulfide bridge in the rice granule bound starch synthase I catalytic domain as elucidated by X-ray structure analysis. Bioscience, Biotechnology, and Biochemistry, 2012, 76(8): 1591-1595.
[50] Cai X, Wang Z, Xing Y, Zhang J, Hong M. Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of Waxy gene in rice cultivars of intermediate amylose content. The Plant Journal, 1998, 14(4): 459-465.
[51] Li H, Fitzgerald M A, Prakash S, Nicholson T M, Gilbert R G. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Scientific Reports, 2017, 7(1): 43713.
[52] Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydrate Polymers, 2016, 146: 253-263.
[53] Kong X, Bertoft E, Bao J, Corke H. Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. International Journal of Biological Macromolecules, 2008, 43(4): 377-382.
[54] Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O. Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydrate Polymers, 1998, 37(2): 153-158.
[55] Benmoussa M, Moldenhauer K A K, Hamaker B R. Rice amylopectin fine structure variability affects starch digestion properties. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1475-1479.
[56] Isshiki M, Yamamoto Y, Satoh H, Shimamoto K. Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiology, 2001, 125(3): 1388-1395.

Funding

The National Natural Science Foundation of China(31825019),The National Special Project on Breeding NewVarieties of Genetically Modified Organisms(2016ZX08001006-005),The Jiangsu Province Key Research andDevelopment Program Modern Agriculture(BE2018357)
Share on Mendeley
PDF(19131 KB)

Accesses

Citation

Detail

Sections
Recommended

/