Transcriptome Analysis of the Unfertilized Ovule of Watermelon with Heat Shock Treatment

ZHU Ying-chun,LI Wei-hua,AN Guo-lin,YUAN Gao-peng,SI Wen-jing,LIU Jun-pu and SUN De-xi

PDF(36522 KB)
PDF(36522 KB)
Journal of Plant Genetic Resources ›› 2021, Vol. 22 ›› Issue (3) : 834-850. DOI: 10.13430/j.cnki.jpgr.20201202001
Research Articles

Transcriptome Analysis of the Unfertilized Ovule of Watermelon with Heat Shock Treatment

  • ZHU Ying-chun, LI Wei-hua, AN Guo-lin, YUAN Gao-peng, SI Wen-jing, LIU Jun-pu, SUN De-xi
Author information +
History +

Abstract

In order to reveal the molecular mechanism of heat shock on ovule expansion, the global transcriptional profiles using RNA-seq were revealed based on the unfertilized ovules of watermelon under heat shock treatment. Total RNAs were extracted from the unfertilized ovules at 0 hour (A1), 4 hour (A3), 8 hour (A5), 12 hour (A7) and 24 hour (A8) post heat shock at 37℃, and then subjected for RNA-seq. Overall, 10093 differentially expressed genes (DEGs) were detected in the four pair-wise comparison groups (A3 to A1, A5 to A1, A7 to A1 and A8 to A1), including 4645 DEGs that were commonly detected at four comparisons. The cluster analysis of DEGs showed that the transcriptional reprograming of unfertilized ovules occurred after heat shock at 37℃ for 4 h, implying that the earlier response upon heat shock treatment. GO analysis showed that DEGs were mainly annotated in cell processes, cell parts and organelles, suggesting that heat shock may increase the activity of ovule cells. KEGG analysis revealed enrichments in amino acid metabolism, carbohydrate and sugar metabolism, plant hormone signal transduction and MAPK signaling pathway, which raises a putative impact on the development of unfertilized ovule. In addition, it was found that changes in the expression of DEGs related to heat shock proteins, plant hormones and embryo development under heat stress may be important in inducing unfertilized ovule development, which provides preliminary insights for future unlocking the molecular mechanism of heat shock development of unfertilized ovules in watermelon.

Key words

watermelon / unfertilized ovule / heat shock / comparative transcriptome

Cite this article

Download Citations
ZHU Ying-chun,LI Wei-hua,AN Guo-lin,YUAN Gao-peng,SI Wen-jing,LIU Jun-pu and SUN De-xi. Transcriptome Analysis of the Unfertilized Ovule of Watermelon with Heat Shock Treatment. Journal of Plant Genetic Resources. 2021, 22(3): 834-850 https://doi.org/10.13430/j.cnki.jpgr.20201202001

References

[1] 陈绍江.玉米单倍体育种技术研究及应用. 2019年中国作物学会学术年会论文摘要集, 2019,20.Chen S J. Research and application of haploid breeding technology in Maize. Abstract collection of papers from the annual conference of Chinese Crop Society in 2019, 2019, 20.
[2] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z, Mccuiston J, Wang W. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542 (7639): 105-109.
[3] Zhong Y, Liu C, Qi X, Jiao Y, Chen S. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5 (6): 575-580.
[4] Liu C, Li X, Meng D, Zhong Y, Chen C, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S. A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Molecular Plant, 2017, 10 (3): 520-522.
[5] 原玉香, 张晓伟, 耿建峰, 蒋武生, 韩永平. 利用游离小孢子培养技术育成早熟大白菜新品种‘豫新60’.园艺学报, 2004, 031 (005): 704-704.Yuan X Y, Zhang X W, Geng J F, Jiang W S, Han Y P. 'Yuxin 60'-A New Early Maturing Chinese Cabbage Hybrid. Acta Horticulturae Sinica, 2004, 031 (005): 704-704.
[6] Maraschin S D F, Gaussand G, Caspers M, Pulido A, Wang M. Androgenic switch in barley microspores. Acta Biologica Cracoviensia, 2005,47: 42-42.
[7] Hecht V, Vielle-calzada J P, Hartog M V, Schmidt E D, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant physiology, 2001, 127(3):803-816.
[8] 韩毅科, 杜胜利, 魏爱民, 张历, 刘楠, 张桂华, 赵国云. 利用未受精子房培养技术育成黄瓜新品种‘津美3号’. 园艺学报, 2010, (3): 509-510.Han Y K, Du S L, Wei A M, Zhang L, Liu N, Zhag G H, Zhao G Y. 'Jinmei 3'-A new cucumber variety was developed by using unfertilized ovary culture technique. Acta Horticulturae Sinica, 2010, (3): 509-510.
[9] 韩毅科, 杜胜利, 魏爱民, 刘楠, 陈正武, 李平. 露地黄瓜新品种津优401 的选育. 中国蔬菜, 2015, 1 (5): 61.Han Y K, Du S L, Wei A M, Liu N, Chen Z W, Li P. A New Cucumber F1 Hybrid—'Jinyou 401'. China Vegetables, 2015, 1 (5): 61.
[10] 韩毅科, 杜胜利, 魏爱民, 陈正武, 刘楠, 张海鹏, 李波. 露地黄瓜新品种‘津优 409’.园艺学报, 2016, 43(8): 1627-1628.Han K Y, Du S L, Wei A M, Chen Z W, Liu N, Zhang H P, Li B. A New Cucumber Open Field Hybrid Cultivar‘Jinyou 409'. Acta Horticulturae Sinica, 2016, 43 (8): 1627-1628.
[11] 魏爱民, 姚尧, 刘楠, 车黎明, 魏盼盼, 韩毅科, 陈正武, 杜胜利. 黄瓜离体雌核发育早期相关基因的转录组初步分析. 华北农学报, 2019, 34 (6): 63-73.Wei A M, Yao Y, Liu N, Che L M, Wei P P, Han Y K, Chen Z W, Du S L. Related Genes of Cucumber in vitro Gynogenesis in the Early Stage from the Perspective of Transcriptome. Acta Agriculturae Boreali-Sinica, 2019, 34 (6): 63-73.
[12] 谢冰, 王秀峰, 樊治成. 西葫芦未受精胚珠离体培养条件的优化及胚囊植株的产生. 中国农业科学, 2006, 39 (1): 132-138.Xie B, Wang X F, Fan Z C. Improved Conditions of in vitro Culture of Unpollinated Ovules and Production of Embryonary Sac Plants in Summer Squash (Cucurbita pepo L.). Scientia Agricultura Sinica, 2006, 39 (1): 132-138.
[13] 刘鹍. 苦瓜单倍体诱导的初步研究. 武汉:华中农业大学, 2010.Liu K. Preliminary Studies of Induce Haploid Of Bitter Gourd (Momordica charantia L.).Wuhan:Huazhong Agricultural University, 2010.
[14] 翟庆慧. 南瓜未受精子房和未受精胚珠离体培养研究. 郑州:河南农业大学, 2009.Zhai Q H. Study on in vitro culture unpollinated Ovary and Ovule in pumpkin (Cucurbita moschata Duch.). Zhengzhou: Henan Agricultural University, 2009.
[15] 薛光荣, 余文炎, 费开伟, 崔海南, 孙瑞星. 西瓜花药离体培养获得花粉植株. 植物生理学报, 1983, 4: 42-44.Xue G R, Yu W Y, Fei K W, Zhai H N, Sun R X. Pollen plants were obtained from watermelon anthers cultured in vitro. Plant Physiology Journal, 1983, 4: 42-44.
[16] 韩丽华. 厚皮甜瓜未受精胚珠离体培养技术. 保定:河北农业大学, 2004.Han L H. In vitro Gynogenesis in Melon(Cucumis melo L.) from unpollinated Ovules. Baoding: Hebei Agricultural University, 2014.
[17] 周林. 西瓜花药、子房和子叶离体培养影响因素的研究. 南宁:广西大学, 2009.Zhou L. Study of Influence Factors on Anther, Ovary and Cotyledon Culture in Vitro of Citrullus lanatus. Nanning: Guangxi University, 2009.
[18] 李玲, 成娟, 闵子扬, 童龙, 李涵, 孙小武. 西瓜未受精胚珠的离体培养. 中国瓜菜, 2014, S1: 34-37.Li L, Cheng J, Min Z Y, Tong L, Sun X W. In vitro culture of unfertilized ovules of watermelon. China Cucurbits and Vegetables, 2014, S1: 34-37.
[19] 荣文娟, 朱迎春, 孙德玺, 邓云, 刘君璞. 葫芦科作物未受精子房和胚珠离体培养研究进展. 江苏农业科学, 2015, 43 (2): 4-7.Rong W J, Zhu Y C, Sun D X, Deng Y, Liu J P. Advances in vitro culture of unfertilized ovules and ovules from Cucurbit crops. Jiangsu Agricultural Sciences, 2015, 43 (2): 4-7.
[20] 潘莉, 郑奇君. 烟草未授粉子房单倍体诱导及影响因素的研究. 河南农业大学学报, 1999, 33 (1): 48-52.Pan L, Zheng Q J. Study on haploid induction and its influencing factors in unpollinated ovary of Tobacco. Acta Agriculturae U niversitatis Henanensis, 1999, 33 (1): 48-52.
[21] Ashok Kumar H G, Murthy H N, Paek K Y. Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Entia Horticulturae, 2003, 98 (3): 213-222.
[22] 王璐, 陈小燕, 张力, 陈怀勐, 任华中. 不同因素对黄瓜未受精子房胚状体诱导的影响. 西北农业学报, 2008, 17 (004): 267-270.Wang L, Chen X Y, Zhang L, Chen H M, Ren Z H. Effect of Diffirent Factors on Induction of Embryoids in Unfertilized Ovaries of Cucumber. Acta Agriculturae Boreali-occidentalis Sinica, 2008, 17 (004): 267-270.
[23] Kircher M, Stenzel U, Kelso J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol., 2009, 10 (8): R83.
[24] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013, 14 (4):R36.
[25] Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9 (4): 357-359.
[26] Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z. Identification of Suitable Reference Genes for Gene Expression Normalization in qRT-PCR Analysis in Watermelon. Plos One, 2014, 9(2):e90612.
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
[28] Zhu Y C, Sun D X, Deng Y, An G L, Li W H, Si W J, Liu J P, Sun X W. Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon(Citrullus lanatus). Journal of Integrative Agriculture, 2020,19 (2): 528-540.
[29] Kamiya Y, Sugawara S, Hayashi K I, Yao H, McSteen P, Zhao Y, Kasahara H, Mashiguchi K, Yaeno T, Tanaka K, Shirasu K, Sakai T, Hanada A, Kawaide H, Natsume, M. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45):18512-18517.
[30] Wasternack C, Feussner I. The Oxylipin Pathways: Biochemistry and Function. Annual Review of Plant Biology, 2018, 69 (1): 363.
[31] Samuel J G A, Noem F, Encarnaci N M S, Estela S D J, Thomas P. Functional and Structural Analysis of Maize Hsp101 IRES. Plos One, 2014, 9 (9): e107459.
[32] Guo M, Liu J H, Lu J P, Zhai Y F, Ewang H, Gong Z H, Wang S B, Lu M H. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Frontiers in Plant Science, 2015, 6: 806.
[33] Yan H, Zhang A, Chen J, He X, Xu B, Xie G, Miao Z, Zhang X, Huang L. Genome-Wide Analysis of the PvHsp20 Family in Switchgrass: Motif, Genomic Organization, and Identification of Stress or Developmental-Related Hsp20s. Frontiers in Plant Science, 2017, 8: 1024.
[34] Gray J C, Row P E. Protein translocation across chloroplast envelope membranes. Trends in Cell Biology, 1995, 5 (6): 243-7.
[35] Wimmer B,Lottspeich F,van der Klei I,Veenhuis M,Gietl C. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25): 13624-13629.
[36] Song H, Zhao R, Fan P, Wang X, Chen X, Li Y. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 2009, 229 (4): 955-964.
[37] Shigeoka S. The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant Cell Physiology, 2010, 51 (3): 486-96.
[38] Song H, Fan P, Li Y. Overexpression of Organellar and Cytosolic AtHSP90 in Arabidopsis thaliana Impairs Plant Tolerance to Oxidative Stress. Plant Molecular Biology Reporter, 2009, 27 (3): 342-349.
[39] Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H, Palit D S. Overexpression of GmHsp90s, a Heat Shock Protein 90 (Hsp90) Gene Family Cloning from Soybean, Decrease Damage of Abiotic Stresses in Arabidopsis thaliana. Plos One, 2013, 8 (7): e69810.
[40] Yamada K, Fukao Y, Hayashi M, Fukazawa M, Nishimura M. Cytosolic HSP90 Regulates the Heat Shock Response That Is Responsible for Heat Acclimation in Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282 (52): 37794-37804.
[41] 周莎莎. 外源生长素及其类似物对香菇耐热性及相关基因表达量的影响. 武汉:华中农业大学, 2019.Zhou S S. Effects of Exogenous Auxin and Its Analogues on Thermotolerance and Expression of Genes Related to Heat Stress in Lentinula Edodes. Wuhan: Huazhong Agricultural University, 2019.
[42] Tan K, Lessieur E, Cutler A, Nerone P, Vasanji A, Asosingh K, Erzurum S, Anand-apte B. Impaired function of circulating CD34(+) CD45(-) cells in patients with proliferative diabetic retinopathy. Experimental Eye Research, 2010, 91 (2): 229-237.
[43] Hayajneh W A, Hajj A, Hulliel F, Sarkis D K, Badal R E. Susceptibility trends and molecular characterization of Gram-negative bacilli associated with urinary tract and intra-abdominal infections in Jordan and Lebanon: SMART 2011-2013. International Journal of Infectious Diseases, 2015,35:56-61.
[44] 王飞. 拟南芥和小麦茉莉酸合成基因OPR3的耐热功能鉴定及其调控机理解析. 北京:中国农业大学, 2014.Wang F. The Functional Characterization and Regulatory Mechanism Analysis of Jasmonate Synthetic Gene OPR3 in Thermotolerance of Arabidopsis and Wheat (Triticum aestivum L.). Beijing: China Agricultural University, 2014.
[45] 王飞, 田雪军, 赵月, 臧新山, 耿晓丽, 倪中福, 姚颖垠, 胡兆荣, 辛明明. 小麦茉莉酸诱导蛋白基因TaJIP的克隆和功能鉴定. 中国农业大学学报, 2015, 20 (002): 50-57.Wang F, Tian X J, Zhao Y, Zang X S, Geng Q L, Ni Z F, Yao Y G, Hu Z R, Xin M M. Isolation and characterization of Jasmonate induced protein TaJIPin wheat (Triticum aestivum). Journal of China Agricultural University, 2015, 20 (002): 50-57.
[46] Lorenzo O, Varotto S, Pérez-Pérez Y, El-tantawy A A, Testillano P S. Stress-Induced Microspore Embryogenesis Requires Endogenous Auxin Synthesis and Polar Transport in Barley. Frontiers in Plant Ence, 2019, 10:1200.
[47] Perry e S, Lehti d M, Fernandez E D. The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiology, 1999, 120(1):121-129.
[48] Schrauwen J, Cordewener J, Wullems G, Oldenhof M, Custers J, Lookeren Campagne M. Analysis of microspore-specific promoters in transgenic tobacco. Plant Molecular Biology, 1997, 35 (6): 689-699.
[49] Duchow S, Dahlke R I, Geske T, Blaschek W, Classen B. Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides. Carbohydr Polym, 2016, 152(5): 149-155.
Share on Mendeley
PDF(36522 KB)

Accesses

Citation

Detail

Sections
Recommended

/