The Role of MiR169 Family Members in the Processes of Growth, Development and Abiotic Stress Response in Planta

ZHANG Xing-yuan,TIAN Yu-hao,QIN Yu-zhi,XIONG Xing-yao and HU Xin-xi

PDF(8928 KB)
PDF(8928 KB)
Journal of Plant Genetic Resources ›› 2021, Vol. 22 ›› Issue (4) : 900-909. DOI: 10.13430/j.cnki.jpgr.20201020001
Review

The Role of MiR169 Family Members in the Processes of Growth, Development and Abiotic Stress Response in Planta

  • ZHANG Xing-yuan1,TIAN Yu-hao1,QIN Yu-zhi1,XIONG Xing-yao2,HU Xin-xi1
Author information +
History +

Abstract

MicroRNA (miRNA) is a well-studied small non-coding single-stranded RNA molecules encoded by endogenous genes with a length of about 20-24 nucleotides. It plays a key role in plant organ formation, growth and development, maintenance of genomic integrity and responses to abiotic stress. Among them, the miRNA169 family is detected widely with levels of conservativation in plants, and these family members participat into the regulation of a kind of conserved transcription factor NF-YA at post-transcriptional level. They are known crucial role in root development, lateral organ formation, floral organ formation, stomatal formation and stress of plants. Here we reviewed the origin and evolutionary mechanism of the miRNA169 family and its involvement in plant growth and response to abiotic stresses (i.e. high salinity, drought, low temperature and heavy metals) as other stresses conditions. We wish to provide insight of future understanding the biological function of miRNA169 family members responding to various stresses.

Key words

MicroRNA169 / target gene / abiotic stress / reaction mechanism

Cite this article

Download Citations
ZHANG Xing-yuan,TIAN Yu-hao,QIN Yu-zhi,XIONG Xing-yao and HU Xin-xi. The Role of MiR169 Family Members in the Processes of Growth, Development and Abiotic Stress Response in Planta. Journal of Plant Genetic Resources. 2021, 22(4): 900-909 https://doi.org/10.13430/j.cnki.jpgr.20201020001

References

[1]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854.
[2]Reinhart B J,Slack F J,Basson M,Pasquinelli A E,Bettinger J C,Rougvie A E,Horvitz H R,Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.[J]. Nature,2000,403(6772).
[3]Pasquinelli A E,Reinhart B J,Slack F,Martindale M Q,Kuroda M I,Maller B,Hayward D C,Ball E E,Degnan B,Müller P,Spring J,Srinivasan A,Fishman M,Finnerty J,Corbo J,Levine M,Leahy P,Davidson E,Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.[J]. Nature,2000,408(6808).
[4]Moritz Sch?fer,Constance Ciaudo. Prediction of the miRNA interactome – Established methods and upcoming perspectives[J]. Computational and Structural Biotechnology Journal,2020.
[5]Parry Devin H,Xu Jinling,Ruvkun Gary. A whole-genome RNAi Screen for C. elegans miRNA pathway genes.[J]. Current biology : CB,2007,17(23).
[6]Waqas Ahmed,Yanshi Xia,Ronghua Li,Guihua Bai,Kadambot H.M. Siddique,Peiguo Guo. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops[J]. Genomics,2020,112(2).
[7]Khraiwesh Basel,Zhu Jian-Kang,Zhu Jianhua. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants.[J]. Biochimica et biophysica acta,2012,1819(2).
[8]任菲,何顺民,刘长宁,赵屹.非编码RNA组科学数据库:NONCODE[J].科研信息化技术与应用,2009(03):7-17.Ren F, He S, Liu C, Zhao Y.Noncoding RNA Group Scientific Database :NONCODE[J]. Information Technology and Applications for Scientific Research,2009(03):7-17.
[9]Song Xianwei,Li Yan,Cao Xiaofeng,Qi Yijun. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions.[J]. Annual review of plant biology,2019.
[10]Wang L,Wang M B,Tu J X,Helliwell C A,Waterhouse P M,Dennis ES,Fu TD,Fan YL.Cloning and characterization of microRNAs from Brassica napus.FEBS Lett,2007,5— 81(2O):3848—3856.
[11]Calvino M,Messing J.Discovery ofMicroRNA169 gene copies in genomes of flowering plants through positional information.Genome Biol Evol,2013,5(2):402—417.
[12]Siefers N, Dang K K, Kumimoto R W, Bynum W E IV, Tayrose G, Holt B F III.2009. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plantphysiology 149: 625–641.(7)
[13]Li, Y., Fu, Y., Ji, L., Wu, C. and Zheng, C. (2010) Characterization and Expression Analysis of the Arabidopsis miR169 Family. Plant Science, 178, 271-280.
[14]Du Qingguo,Zhao Meng,Gao Wei,Sun Suzhen,Li Wen-Xue. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis.[J]. The Plant journal : for cell and molecular biology,2017,91(1).
[15]Kulcheski F R,de Oliveira L F,Molina L G,Almerao M P, Rodrigues F A,M arcolino J,Barbosa JF,Stolf-M oreira R,Nepomuceno A L,M arcelino—Guimaraes FC,Abdelnoor V,Nascimento LC,Carazzolle M F,Pereira GAG,M argis R.Identification of novel soybean microRNAs involved in abiotic and biotic stresses.BM C Genomics,2011,12:307.
[16]ZhaoY P,XuZ H,MoQ C,Zou C,Li W X,XuY B,Xie C X. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize.Ann Bot,2013,1 12(3):633—642.
[17]Serivichyaswat Phanu T, Susila Hendry, Ahn Ji Hoon. Elongated Hypocotyl 5-Homolog (HYH) Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169 .. 2017, 8:2087.
[18]Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H. and Jin, Y. (2009) Members of miR-169 Family Are Induced by High Salinity and Transiently Inhibit the NF-YA Transcription Factor. BMC Molecular Biology, 10, 29.
[19]Sombir Rao, Sonia Balyan, Sarita Jha, et al. Novel insights into expansion and functional diversification of MIR169 family in tomato. 2020, 251(1):1776-1792.
[20]Ceribelli Michele, Dolfini Diletta, Merico Daniele, et al. The histone-like NF-Y is a bifunctional transcription factor.. 2008, 28(6):2047-58.
[21]Joseph D. Fleming, Giulio Pavesi, Paolo Benatti, et al. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positionedwith growth-controlling transcription factors. 2013, 23(8):1195-1209.
[22]于月华,王朝露,倪志勇.鹰嘴豆miR169家族的生物信息学分析及靶基因预测[J/OL].分子植物育种:1-13[2020-09-02].S Yu Y H, Wang C L, NiZ Y.Bioinformatics analysis and target gene prediction of miR169 family in chickpea [J/OL].Molecular plant Breeding :1-13[2020-09-02].
[23]练从龙. 杨树miR169o及其靶基因NF-YA的功能研究[D].北京林业大学,2018.Lian C L. Functional study of miR169o and its target gene NF-YA in poplar [D].Beijing Forestry University,2018.
[24]Qi Ding, Jun Zeng, Xin-Qiang He. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. 2016, 198:1-9.
[25]Yu Yuehua, Ni Zhiyong, Wang Yi, et al. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana.. 2019, 285:68-78.
[26]许志豪,何平安,欧斯艳,王金祥.植物转录调控因子NF-Y研究进展[J].嘉应学院学报,2019,37(03):61-69.Xu Z H, He P A, Ou S Y, Wang J X.Advances in the study of plant transcription regulator NF-Y [J]. Journal of jiaying university,2019,37(03):61-69.
[27]HANEMIAN M, BARLET X, SORIN C, et al. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway[J]. New Phytol, 2016, 211 (2) :502-515.
[28]Shin Sang-Yoon,Jeong Jin Seo,Lim Jae Yun,Kim Taewook,Park June Hyun,Kim Ju-Kon,Shin Chanseok. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies.[J]. BMC genomics,2018,19(1).
[29]Guo Hui-Shan,Xie Qi,Fei Ji-Feng,Chua Nam-Hai. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.[J]. The Plant cell,2005,17(5).
[30]牛亚利,赵芊,张肖晗,艾秋实,宋水山.赤霉素信号在非生物胁迫中的作用及其调控机制研究进展[J].生物技术通报,2015,31(10):31-37.Niu Y L, ZHAO Q, ZHANG X H, AI Q S, Song S S. Research progress on the role of gibberellin signaling in abiotic stress and its regulatory mechanism [J]. Bulletin of biotechnology,2015,31(10):31-37.
[31]Junpeng Gao,Xiaoli Cao,Shandang Shi,Yuling Ma,Kai Wang,Shengjie Liu,Dan Chen,Qin Chen,Haoli Ma. Genome-wide survey of Aux/IAA gene family members in potato ( Solanum tuberosum ): Identification, expression analysis, and evaluation of their roles in tuber development[J]. Biochemical and Biophysical Research Communications,2016,471(2).
[32]Liu Han-Hua,Tian Xin,Li Yan-Jie,Wu Chang-Ai,Zheng Cheng-Chao. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.[J]. RNA (New York, N.Y.),2008,14(5).
[33]Qi Lanting,Zheng Yuguang,Wang Peiyan,Song Junna,Jing Songsong,Xu Lijun,Zhou Xuanyu,Hao Zongqian,Yan Yuping,Liu Zhao. Overexpression of a sour jujube gene ZjPYR1, encoding a putative abscisic acid receptor, increases sensitivity of the stomata and roots to ABA in Arabidopsis thaliana.[J]. Gene expression patterns : GEP,2020,36.
[34]张立峰. 落叶松体细胞胚TCTP与NFYA基因克隆及其在ABA调控过程中的表达机制[D].中国林业科学研究院,2014.Zhang L F. Cloning of TCTP and NFYA genes in somatic embryos of Larch and their expression mechanisms in ABA regulation [D].Chinese Academy of Forestry sciences,2014.
[35]Ding Qi,Zeng Jun,He Xin-Qiang. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.[J]. Journal of plant physiology,2016,198.
[36]田佳星. 毛白杨响应赤霉素的转录调控与等位变异解析[D].北京林业大学,2016.Tian J X. Transcriptional regulation and analysis of allelic variation in response to gibberellin in Poplar [D].Beijing Forestry University,2016.
[37]Sun, W., Xu, X.H., Wu, X., Wang, Y., Lu, X., Sun, H. and Xie, X. (2015)Genome-Wide Identification of microRNAs and Their Targets in Wild Type and phyB Mutant Provides a Key Link between microRNAs and the phyB-Mediated Light Signaling Pathway in Rice. Frontiers in Plant Science, 6, 372.
[38]Shirakawa Makoto,Ueda Haruko,Nagano Atsushi J,Shimada Tomoo,Kohchi Takayuki,Hara-Nishimura Ikuko. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis.[J]. The Plant cell,2014,26(10).
[39]Hachez Charles,Ohashi-Ito Kyoko,Dong Juan,Bergmann Dominique C. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA.[J]. Plant physiology,2011,155(3).
[40]Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK,Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20: 1775–1785.
[41]Kezhen Yangy,Min Jiangy,Jie Le.A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell[J].Journal of Integrative Plant Biology,2014,56(06):539-549.
[42]Kutter C, Schob H, Stadler M, Meins F, Jr, Si Ammour A (2007) MicroRNA mediated regulation of stomatal development in Arabidopsis. Plant Cell 19: 2417–2429.
[43]Zhiyong Hu. Sddt participates in microRNA-mediated regulation of stomata development via interaction with DCL1 in Arabidopsis and Brassica napus[C]. 中国农业科学院、中国作物学会.第七届国际作物科学大会摘要集.中国农业科学院、中国作物学会:中国作物学会,2016:234.
[44]Shimada Tomoo,Sugano Shigeo S,Hara-Nishimura Ikuko. Positive and negative peptide signals control stomatal density.[J]. Cellular and molecular life sciences : CMLS,2011,68(12).。
[45]王明,谢洁,熊兴耀,王万兴,胡新喜,秦玉芝.miRNAs在园艺植物非生物胁迫响应中的作用[J].现代园艺,2017(18):13-14.Wang M, Xie J, XIONG X Y, Wang W X, Hu X X, Qin Y C. Role of miRNAs in abiotic stress response of horticultural plants [J].Modern Horticulture,2017(18):13-14.
[46]Stephenson, T.J., Mcintyre, C.L., Collet, C. and Xue, G.-P. (2011) TaNF-YB3 Is Involved in the Regulation of Photosynthesis Genes in Triticum aestivum. Functional and Integrative Genomics, 11, 327-340.
[47]谢洁. miRNA390在马铃薯中响应低温胁迫的研究[D].湖南农业大学,2018.Xie J. Study of miRNA390 in response to low temperature stress in potatoes [D].Hunan Agricultural University,2018.
[48]秦玉芝,邢铮,邹剑锋,何长征,李炎林,熊兴耀.持续弱光胁迫对马铃薯苗期生长和光合特性的影响[J].中国农业科学,2014,47(03):537-545.Qin Y Z, Xing Z, Zou J F, He C Z, Li Y L, XIONG X Y. (in Chinese)Effects of continuous low light stress on potato seedling growth and photosynthetic characteristics [J]. Scientia agricultura sinica,2014,47(0 3):537-545.
[49]张敏,朱明,李文宗,马洁,刘悦萍,江海洋,王磊,徐妙云.Ath-miR169d介导的拟南芥叶片发育的分子调控机制[J].中国农业科学,2017,50(16):3063-3070.Zhang M, Zhu M, LI W Z, Ma J, LIU Y P, JIANG H Y, Wang L, XU M Y. Molecular regulation mechanism of leaf development in Arabidopsis thaliana mediated by Ath-miR169d [J].Agricultural science of China,2017,50(16):3063-3070.
[50]段中鑫. 胡杨microRNA Peu-miR156j和Peu-miR169o表达模式分析及功能鉴定[D].北京林业大学,2012.Duan Z X. Expression pattern analysis and functional identification of microRNA Peu-MIR156J and Peu-MiR169O of Populus eugenicus [D].Beijing Forestry University,2012.
[51]李青,秦玉芝,胡新喜,王万兴,熊兴耀.马铃薯耐盐性研究进展[J].园艺学报,2017,44(12):2408-2424.Li Q, Qin Y Z, Hu X X, Wang W X, Xiong X Y. Advances in research on potato salt tolerance [J]. Acta horticulturae sinica,2017,44(12):2408-2424.
[52]邹哲. 番茄microRNA Sly-mir156α和Sly-miR169c的功能鉴定[D].华中农业大学,2010.Zou Z. Functional identification of Tomato microRNA Sly- Mir156 and Sly- MiR169C [D].Huazhong Agricultural University,2010.
[53]李超汉.黄瓜嫁接苗microRNA鉴定及对非生物胁迫的应答[D].中国农业科学院,2014.Li C H.MicroRNA identification of grafted Cucumber seedlings and its response to abiotic stress [D]. Chinese Academy of Agricultural Sciences,2014.
[54]Lian Conglong,Li Qing,Yao Kun,Zhang Ying,Meng Sen,Yin Weilun,Xia Xinli. Corrigendum: Populus trichocarpa PtNF-YA9 , a Multifunctional Transcription Factor, Regulates Seed Germination, Abiotic Stress, Plant Growth and Development in Arabidopsis .[J]. Frontiers in plant science,2018,9.
[55]Botao Zhao,Ruqiang Liang,Liangfa Ge,Wei Li,Huasheng Xiao,Hongxuan Lin,Kangcheng Ruan,Youxin Jin. Identification of drought-induced microRNAs in rice[J]. Biochemical and Biophysical Research Communications,2007,354(2).
[56]覃玉蓉,夏新莉,尹伟伦.实时荧光定量PCR检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J].现代仪器,2011,17(03):28-30.Qin Y L, Xia X L, Yin W L.Real-time fluorescence quantitative PCR was used to detect the expression of miR169g in poplar leaves under dehydration and high salt stress [J].Modern instruments,2011,17(03):28-30.
[57]阴祖军. 胁迫诱导棉花microRNA的差异表达分析[D].山东农业大学,2011.Yin Z J. Differential expression analysis of cotton microRNA induced by stress [D].Shandong Agricultural University,2011.
[58]陶庆. 油菜抗逆响应bna-miR169及其靶基因BnNF-YA的表达分析[D].南京农业大学,2015.Tao Q. Expression analysis of BNA-MIR169 and its target gene BNNF-YA in rape response to stress [D].Nanjing Agricultural University,2015.
[59]Miao Yun Xu, Lan Zhang, Wei Wei Li, et al. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. 2014, 65(1):89-101.
[60]Kosar Moradi,Fariba Khalili. Assessment of Pattern Expression of miR172 and miR169 in Response to Drought Stress in Echinacea purpurea L[J]. Biocatalysis and Agricultural Biotechnology,2018.
[61]Vandana Hivrale,Yun Zheng,Chandra Obul Reddy Puli,Guru Jagadeeswaran,Kanchana Gowdu,Vijaya Gopal Kakani,Abdelali Barakat,Ramanjulu Sunkar. Characterization of drought- and heat-responsive microRNAs in switchgrass[J]. Plant Science,2016,242.
[62]王红. 干旱胁迫下苹果miRNAs的表达分析及功能研究[D].西北农林科技大学,2017.Wang H. Expression analysis and functional study of miRNAs in apple under drought stress [D].Northwest A F University,2017.
[63]Wen-Xue Li, Youko Oono, Jianhua Zhu, et al. The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance. 2008, 20(8):2238-2251.
[64]Thiebaut, F., Grativol, C., Tanurdzic, M., Carnavale-Bottino, M., Vieira, T., Motta, M.R., Rojas, C., Vincentini, R., Chabregas, S.M. and Hemerly, A.S. (2014) Differential sRNA Regulation in Leaves and Roots of Sugarcane under Water Depletion. PLoS ONE, 9, e93822.
[65]Khraiwesh Basel,Zhu Jian-Kang,Zhu Jianhua. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants.[J]. Biochimica et biophysica acta,2012,1819(2).
[66]Luan Mingda,Xu Miaoyun,Lu Yunming,Zhang Qiuxue,Zhang Lan,Zhang Chunyi,Fan Yunliu,Lang Zhihong,Wang Lei. Family-wide survey of miR169s and NF-YAs and their调节以及非生物胁迫中的功能研究[D].南京农业大学,2016.
[67]Siefers N, Dang KK, Kumimoto RW, Bynum WE IV, Tayrose G, Holt BF III.2009. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plantphysiology 149: 625–641.
[68]LiWX,OonoZhu J,HeXJ,Wu JM,IidaK,LuXCui X,Jin H,Zhu JK.The Arabidopsis NFYA5 transcription factor is regulated transcripti0na1ly and posttranscriptionally to promote drought resistance.Plant Cell,2008,20(8) 2238-2251.
[69]Ma Xiaoyan,Li Chunlong,Wang Mei. Wheat NF-YA10 functions independently in salinity and drought stress.[J]. Bioengineered,2015,6(4).
[70]Kulcheski FR,de Oliveira LF,Molina LG,Almerao MP, Rodrigues FA,M arcolino J,Barbosa JF,Stolf-M oreira R, Nepomuceno AL,M arcelino—Guimaraes FC,Abdelnoor RV,Nascimento LC,Carazzolle M F,Pereira GAG,M argis R.Identification of novel soybean microRNAs involved in abiotic and biotic stresses.BM C Genomics,2011,12:307,
[71]Zhiyong Ni,Zheng Hu,Qiyan Jiang,Hui Zhang. GmNFYA3 , a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Molecular Biology,2013,82(1-2).
[72]陈锐. 耐旱野生大豆MicroRNA的鉴定与表达分析[D].中国农业科学院,2009.Chen R. Identification and expression analysis of drought-tolerant wild soybean MicroRNA [D].Chinese Academy of Agricultural Sciences,2009.
[73]Wu Xiao Hong,Wang Wei,Xie Xiao Li,Yin Chun Mei,Hou Hai Jun. Effects of rice straw mulching on N2O emissions and maize productivity in a rain-fed upland.[J]. Environmental science and pollution research international,2018,25(7).
[74]Zhang Xiaohui,Zou Zhe,Gong Pengjuan,Zhang Junhong,Ziaf Khurram,Li Hanxia,Xiao Fangming,Ye Zhibiao. Over-expression of microRNA169 confers enhanced drought tolerance to tomato.[J]. Biotechnology letters,2011,33(2).
[75]张晓辉. 番茄中microRNA的功能和应用研究[D].华中农业大学,2010.Zhang X H. Study on the function and application of microRNA in tomato [D].Huazhong Agricultural University,2010.
[76]陈禹彤,陈华民,余超,Amy Thein,田芳,何晨阳.水稻miR169o及其靶基因OsNF-YAs对缺水胁迫的早期表达模式[J].生物技术通报,2015,31(08):76-81.SChen Y T, Chen H M, YU C,Amy T, Tian F, He C Y.Early expression pattern of miR169o and its target gene OsNF-Yas in rice under water stress [J].Bulletin of biotechnology,2015,31(08):76-81.
[77]Qingpo Liu,Hong Wang,Haichao Hu,Hengmu Zhang. Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice[J]. Molecular Genetics and Genomics,2015,290(2).
[78]Tang Ruimin,Gupta Sanjay K,Niu Suyan,Li Xiu-Qing,Yang Qing,Chen Guanshui,Zhu Wenjiao,Haroon Muhammad. Transcriptome analysis of heat stress response genes in potato leaves.[J]. Molecular biology reports,2020,47(6).
[79]Raja Vaseem,Qadir Sami Ullah,Alyemeni Mohammed Nasser,Ahmad Parvaiz. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum .[J]. 3 Biotech,2020,10(5).
[80]Rong Chen,Hongling Jiang,Lin Li,Qingzhe Zhai,Linlin Qi,Wenkun Zhou,Xiaoqiang Liu,Hongmei Li,Wenguang Zheng,Jiaqiang Sun,Chuanyou Li. The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors(C)(W)(OA)[J]. Plant Cell,2012,24(7).
[81]Elfving Nils,Davoine Céline,Benlloch Reyes,Blomberg Jeanette,Br?nnstr?m Kristoffer,Müller D?rte,Nilsson Anders,Ulfstedt Mikael,Ronne Hans,Wingsle Gunnar,Nilsson Ove,Bj?rklund Stefan. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development.[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(20).
[82]Bhardwaj Ankur R,Joshi Gopal,Pandey Ritu,Kukreja Bharti,Goel Shailendra,Jagannath Arun,Kumar Amar,Katiyar-Agarwal Surekha,Agarwal Manu. A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L.[J]. PloS one,2014,9(3).
[83]Barciszewska-Pacak, M., Milanowska, K., Knop, K., Bielewicz, D., Nuc, P., Plewka, P., Pacak, A.M., Vazquez, F., Karlowski, W. and Jarmolowski, A. (2015) Arabidopsis microRNA Expression Regulation in a Wide Range of Abiotic Stress Responses. Frontiers in Plant Science, 6,410.
[84]Ragupathy, R., Ravichandran, S., Mahdi, M.S.R., Huang, D., Reimer, E., Domaratz-ki, M. and Cloutier, S. (2016) Deep Sequencing of Wheat sRNA Transcriptome Reveals Distinct Temporal Expression Pattern of miRNAs in Response to Heat, Light and UV. Scientific Reports, 6, Article No. 39373.
[85]Hivrale, V., Zheng, Y., Puli, C.O.R., Jagadeeswaran, G., Gowdu, K., Kakani, V.G., Barakat, A. and Sunkar, R. (2016) Characterization of Drought- and Heat-Responsive microRNAs in Switchgrass. Plant Science, 242, 214-223.
[86]Ding Qi,Zeng Jun,He Xin-Qiang. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.[J]. Journal of plant physiology,2016,198.
[87]Shi, Y., Ding Y. and Yang, S. (2014) Cold Signal Transduction and Its Interplay with Phytohormones during Cold Acclimation. Plant Cell Physiology, 56, 7-15.
[88]张译云,任媛媛,陈磊,徐吉臣,张志毅,王延伟.毛白杨12种microRNAs的低温胁迫差异表达分析[J].中国农学通报,2012,28(07):1-7.Zhang Y Y, Ren Y Y, Chen L, XU J C, Zhang Z Y, WANG Y W.Differential expression analysis of 12 microRNAs in Poplar under low temperature stress [J].Chinese agricultural science bulletin,2012,28(07):1-7.
[89]党春艳. 高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析[D].兰州大学,2013.Dang C Y. Expression analysis of miRNAs and their target genes regulated by low temperature stress in Alpine mustard [D].Lanzhou University,2013.
[90]Yuli Li,Ling Li,Wenjie Ding,Haiyan Li,Tingting Shi,Xiulian Yang,Lianggui Wang,Yuanzheng Yue. Genome-wide identification of Osmanthus fragrans bHLH transcription factors and their expression analysis in response to abiotic stress[J]. Environmental and Experimental Botany,2020,172.
[91]王立博. 玉米应答低磷胁迫相关microRNA研究[D].四川农业大学,2013.Wang L B. Study on microRNA related to maize response to low phosphorus stress [D].Sichuan Agricultural University,2013.
[92]裴腊明. 转TsVP提高玉米低磷耐受性的研究及不同玉米基因型低磷响应microRNA的差异分析[D].山东大学,2013.Pei L M. Studies on improvement of maize low Phosphorus tolerance by TsVP and differential analysis of microRNA responses of different maize genotypes to low phosphorus [D].Shandong University,2013.
[93]赵永平. 玉米自交系B73低硝酸盐响应miRNA及其靶基因鉴定[D].中国农业科学院,2013.Zhao Y P. Identification of low nitrate responsive mirnas and their target genes in maize inbred line B73 [D].Chinese Academy of Agricultural Sciences,2013.
[94]赵勐. 玉米氮素营养相关小分子非编码RNA的克隆及miRNA169的功能鉴定[D].中国农业大学,2014.Zhao M. Cloning of Nitrogen-nutrition-related small molecule non-coding RNA and functional identification of miRNA169 in maize [D].China Agricultural University,2014.
[95]Gu, M., Xu, K., Chen, A., Zhu, Y., Tang, G. and Xu, G. (2010) Expression Analysis Suggests Potential Roles of microRNAs for Phosphate and Arbuscular Mycorrhizal Signaling in Solanum lycopersicum. Physiologia Plantarum, 138, 226-237.
[96]Yao Lina,Hao Xinyuan,Cao Hongli,Ding Changqing,Yang Yajun,Wang Lu,Wang Xinchao. ABA-dependent bZIP transcription factor, CsbZIP18, from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis.[J]. Plant cell reports,2020.

Funding

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)
Share on Mendeley
PDF(8928 KB)

47

Accesses

0

Citation

Detail

Sections
Recommended

/