The Wild Germplasm Resources of Phaseolus

CHANG Yu-jie,WANG Lan-fen,WANG Shu-min and WU Jing

PDF(15811 KB)
PDF(15811 KB)
Journal of Plant Genetic Resources ›› 2020, Vol. 21 ›› Issue (6) : 1424-1434. DOI: 10.13430/j.cnki.jpgr.20200525002
Review

The Wild Germplasm Resources of Phaseolus

  • CHANG Yu-jie, WANG Lan-fen, WANG Shu-min, WU Jing
Author information +
History +

Abstract

The wild germplasm resources of Phaseolus are abundant, and are important resources for genetic improvement of cultivated Phaseolus beans. In this paper, we provide an overview of the phylogenetic classification, morphological characters, geographical distribution, origin, population structure, genetic diversity, domestication traits and genetic mechanism of Phaseolus species, and put forward some suggestions for future investigation, which contribute to the utilization of wild resources of the genus.

Key words

Phaseolus / wild resources / genetic diversity

Cite this article

Download Citations
CHANG Yu-jie,WANG Lan-fen,WANG Shu-min and WU Jing. The Wild Germplasm Resources of Phaseolus. Journal of Plant Genetic Resources. 2020, 21(6): 1424-1434 https://doi.org/10.13430/j.cnki.jpgr.20200525002

References

[1] Vaz Patto M C, Amarowicz R, Aryee A N A, Boye J I, Chung H J, Martín-Cabrejas M A, Domoney, C. Achievements and challenges in improving the nutritional quality of food legumes. Critical reviews in plant sciences. 2014, 34(1-3):105-143.
[2] Messina V. Nutritional and health benefits of dried beans. The American journal of clinical nutrition. 2014, 100 Suppl 1:437S-442S.
[3] Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia M L, Gioia T, Santo D, Nanni L, Attene G, Papa R. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Frontiers in Plant Science, 2017, 8:722.
[4] Di Vittori V, Bellucci E, Bitocchi E, Rau D, Rodriguez M, Murgia M L, Nanni L, Attene G, Papa R. Domestication and Crop History. The common bean genome. 2017: 21-55.
[5] Delgado-Salinas A, Turley T, Richman A, Lavin M. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Systematic botany. 1999, 24(3).
[6] Dohle S, Berny Mier Y T J C, Egan A, Kisha T, Khoury C K. Wild beans (Phaseolus L.) of north America. North American crop wild relatives, Volume 2. 2019: 99-127.
[7] Ramirez-Villegas J, Khoury C, Jarvis A, Debouck D G, Guarino L. A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS ONE. 2010, 5(10):e13497.
[8] Delgado-Salinas A, Bibler R, Lavin M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Systematic botany. 2006, 31(4):779-791.
[9] Rendon-Anaya M, Herrera-Estrella A, Gepts P, Delgado-Salinas A. A new species of Phaseolus (Leguminosae, Papilionoideae) sister to Phaseolus vulgaris, the common bean. Phytotaxa. 2017, 313(3).
[10] Freytag G F, Debouck D G. Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papiliodoideae) in North America, Mexico and Central America. Botanical miscellany botanical researh institute of texas. 2002.
[11] Freytag G F, Debouck D G. Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, central America. Novon. 1996, 6(2).
[12] Caicedo A L, Gaitán E, Duque M C, Chica O T, Debouck D G, Tohme J. AFLP fingerprinting of Phaseolus lunatus L. and related wild species from South America. Crop Science. 1999, 39(5):1497-1507.
[13] Mercado-Ruaro P, Delgado-Salinas A. Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). American journal of botany. 1998, 85(1):1-9.
[14] Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli P S, Logozzo G, Stougaard J, McClean P, Attene G, Papa R. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(14):E788-796.
[15] Blair M W, Soler A, Cortes A J. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One. 2012, 7(11):e49488.
[16] Ariani A, Berny Mier Y T J C, Gepts P. Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Molecular biology and evolution. 2018, 35(1):119-131.
[17] Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G, Nann, L, Papa R. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytologist. 2013, 197(1):300-313.
[18] Debouck D G, Toro O, Paredes O M, Johnson W C, Gepts P. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Economic botany. 1993, 47(4):408-423.
[19] Kami J, Velasquez V B, Debouck D G, Gepts P. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92(4):1101-1104.
[20] Chacón S M I, Pickersgill B, Debouck D G, Arias J S. Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant systematics and evolution. 2007, 266(3-4):175-195.
[21] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G, Kelly J D, Kudrna D, Lee R, Richard M M, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A Reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics. 2014, 46(7):707-713.
[22] Rendon-Anaya M, Montero-Vargas J M, Saburido-Alvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz J J, Aguilar O M, Vianello-Brondani R P, Santalla M, Delaye L, Gabaldon T, Gepts P, Winkler R, Guigo R, Delgado-Salinas A, Herrera-Estrella A. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology. 2017, 18(1):60.
[23] Mamidi S, Rossi M, Moghaddam S M, Annam D, Lee R, Papa R, McClean P E. Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity (Edinb). 2013, 110(3):267-276.
[24] Gepts P, Papa R, Coulibaly S, Mejía A G, Pasquet R, Oono K, Vaughan D, Tomooka N, Kaga A, Miyazaki S. Wild legume diversity and domestication - insights from molecular methods. 2000.
[25] Serrano-Serrano M L, Hernandez-Torres J, Castillo-Villamizar G, Debouck D G, Sanchez M I. Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Molecular phylogenetics and evolution. 2010, 54(1):76-87.
[26] Serrano-Serrano M L, Andueza-Noh R H, Martínez-Castillo J, Debouck D G, Chacón S M I. Evolution and domestication of lima bean in Mexico: Evidence from ribosomal DNA. Crop Science. 2012, 52(4):1698-1712.
[27] Motta-Aldana J R, Serrano-Serrano M L, Hernández-Torres J, Castillo-Villamizar G, Debouck D G, Chacóns M I. Multiple origins of lima bean landraces in the Americas: Evidence from chloroplast and nuclear DNA polymorphisms. Crop Science. 2010, 50(5):1773-1787.
[28] Andueza-Noh R H, Serrano-Serrano M L, Chacón Sánchez M I, Sanchéz del Pino I, Camacho-Pérez L, Coello-Coello J, Mijangos Cortes J, Debouck D G, Martínez-Castillo J. Multiple domestications of the Mesoamerican gene pool of lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genetic resources and crop evolution. 2012, 60(3):1069-1086.
[29] Martínez-Castillo J, Camacho-Pérez L, Villanueva-Viramontes S, Andueza-Noh R H, Chacón-Sánchez M I. Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: Implications for conservation and the domestication of the species. American journal of botany. 2014, 101(5):851-864.
[30] Gary P N, Richard S F. Teparies in southwestern North America. Economic botany. 1978, 32(1):3-19.
[31] Lawrence K, Thomas F L. Phaseolus (Fabaceae) in Archaeology: AMS. Economic botany. 1999, 53(3):261-272.
[32] Schmit V, Debouck D G. Observations on the origin of phaseolus polyanthus Greenman. Economic botany. 1991, 45(3):345-364.
[33] Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A, Venturini L, Attene G, Albertini E, Jackson S A, Nanni L, Fernie A R, Nikoloski Z, Bertorelle G, Delledonne M, Papa R. Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. The Plant Cell. 2014, 26(5):1901-1912.
[34] Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evolutionary applications. 2009, 2(4):504-522.
[35] Nanni L, Bitocchi E, Bellucci E, Rossi M, Rau D, Attene G, Gepts P, Papa R. Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.). Theoretical and applied genetics. 2011, 123(8):1341-1357.
[36] Papa R, Gepts P. Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theoretical and applied genetics. 2003, 106(2):239-250.
[37] Schinkel C, Gepts P. Phaseolin diversity in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breeding. 1988, 101(4):292-301.
[38] Schinkel C, Gepts P. Allozyme variability in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breeding. 1989, 102(3):182-195.
[39] Mu?oz L C, Duque M C, Debouck D G, Blair M W. Taxonomy of Tepary bean and wild relatives as determined by amplified fragment length polymorphism (AFLP) markers. Crop Science. 2006, 46(4):1744-1754.
[40] Blair M W, Pantoja W, Carmenza Mu?oz L. First use of microsatellite markers in a large collection of cultivated and wild accessions of tepary bean (Phaseolus acutifolius A. Gray). Theoretical and applied genetics. 2012, 125(6):1137-1147.
[41] Escalante A M, Coello G, Eguiarte L E, Pinero D. Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). American journal of botany. 1994, 81(9).
[42] Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, Spagnoletti Zeuli P, Negri V. Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theoretical and applied genetics. 2011, 122(7):1281-1291.
[43] Gepts P, Debouck D G. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). Common beans research for crop improvement. 1991.
[44] Murgia M L, Attene G, Rodriguez M, Bitocchi E, Bellucci E, Fois D, Nanni L, Gioia T, Albani D M, Papa R, Rau D. A comprehensive phenotypic investigation of the “pod-shattering syndrome” in common bean. Frontiers in Plant Science. 2017, 8.
[45] Koinange E M K, Singh S P, Gepts P. Genetic control of the domestication syndrome in common bean. Crop Science. 1996, 36(4):1037-1045.
[46] Gioia T, Logozzo G, Kami J, Spagnoletti Zeuli P, Gepts P. Identification and characterization of a homologue to the Arabidopsis INDEHISCENT gene in common bean. Journal of Heredity. 2013, 104(2):273-286.
[47] Blair M W, Iriarte G, Beebe S. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theoretical and applied genetics. 2006, 112(6):1149-1163.
[48] Pérez-Vega E, Pa?eda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira J J. Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theoretical and applied genetics. 2010.
[49] Tar'an B, Michaels T E, Pauls K P. Genetic Mapping of agronomic traits in common bean. Crop Science. 2002, 42(2).
[50] Kamfwa K, Cichy K A, Kelly J D. Genome-wide association study of agronomic traits in common bean. The Plant Genome. 2015, 8(2).
[51] Kwak M, Velasco D, Gepts P. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). Journal of Heredity. 2008, 99(3):p.283-291.
[52] Shannon S, Meeks-Wagner D R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell. 1991, 3(9).
[53] Repinski L, Kwak M, Gepts P. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theoretical and applied genetics. 2012.
[54] Moghaddam S M, Mamidi S, Osorno J M, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J, Schmutz J, McClean P E. Genome-wide association study identifies candidate loci underlying agronomic traits in a middle American diversity panel of common bean. Plant Genome. 2016, 9(3).
[55] Checa O E, Blair M W. Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Molecular Breeding. 2008, 22(2):201-215.
[56] Zizumbo-Villarreal D, Flores-Silva A, Colunga-García Marín P. The archaic diet in Mesoamerica: Incentive for milpa development and species domestication. Economic botany. 2012, 66(4):328-343.
[57] Rao I M, Beebe S E, Polania J A, Ricaurte J, Cajiao C, Garcia R, Rivera M. Can tepary bean be a model for improvement of drought resistance in common bean. African Crop Science Journal. 2013, 21(4):265-281.
[58] Cortes A J, Monserrate F A, Ramirez-Villegas J, Madrinan S, Blair M W. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS One. 2013, 8(5):e62898.
[59] Blair M W, Cortes A J, This D. Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Science. 2016, 242:250-259.
[60] Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytologist. 2016, 209(4):1781-1794.
[61] Acosta-Gallegos J A, Kelly J D, Gepts P. Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science. 2007, 47:S-44-S-59.
[62] Acevedo M, Steadman J R, Rosas J C, Venegas J. New sources of resistance to bean rust and implications for host-pathogen coevolution. Annual Report. 2006.
[63] Singh S P. Broadening the genetic base of common bean cultivars. Crop Science. 2001, 41(6):1659.
[64] Osborni T C, Alexander D C, Sun S S, Cardona C, Bliss F A. Insecticidal activity and lectin homology of arcelin seed protein. Science. 1988, 240(4849):207-210.
[65] Beaver J S, Zapata M, Alameda M, Porch T G, Rosas J C. Registration of PR0401-259 and PR0650-31 dry bean germplasm lines. Journal of plant registrations. 2012, 6(1):81-84.
[66] Mkwaila W, Terpstra K A, Ender M, Kelly J D. Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breeding. 2011, 130(6):665-672.
[67] Porch T, Beaver J, Debouck D G, Jackson S, Kelly J, Dempewolf H. Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy. 2013, 3(2):433-461.
[68] Osorno J M, Mu?oz C G, Beaver J S, Ferwerda F H, Bassett M J, Miklas P N, Olczyk T, Bussey B. Two genes from Phaseolus coccineus confer resistance to bean golden yellow mosaic virus in common bean. Journal of the American society for horticultural science. 2007, 132(4):530-533.
[69] Vasconcellos R C, Oraguzie O B, Soler A, Arkwazee H, Myers J R, Ferreira J J, Song Q, McClean P, Miklas P N. Meta-QTL for resistance to white mold in common bean. PLoS One. 2017, 12(2):e0171685.
[70] Miklas P N, Zapata M, Beaver J S, Grafton K F. Registration of four dry bean germplasms resistant to common bacterial blight: ICB3, ICB6, ICB8, and ICB10. Crop Science. 1999, 39(2).
[71] Mahuku G S, Jara C E, Cajiao C, Beebe S. Sources of resistance to colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Disease. 2002, 86(12):1383-1387.
[72] Hunter J E. Evaluation of plant introductions of Phaseolus spp. for resistance to white mold. Plant Disease. 1982, 66(1).
[73] Blair M W. Mineral biofortification strategies for food staples: the example of common bean. Journal of agricultural and food chemistry. 2013, 61(35):8287-8294.
[74] Shree P S, Daniel G D, William M R. Interspecific hybridization between Phaseolus vulgaris L. and P. parvifolius Freytag. Bean Improvement Cooperative. 1998.
[75] Kusolwa P M, Myers J R, Porch T G, Trukhina Y, González-Vélez A, Beaver J S. Registration of AO-1012-29-3-3A red kidney bean germplasm line with bean weevil, BCMV, and BCMNV resistance. Journal of plant registrations. 2016, 10(2):149-153.
[76] Souter J R, Gurusamy V, Porch T G, Bett K E Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science. 2017, 57(3):1160-1171.
[77] Balasubramanian P, Vandenberg A, Hucl P, Gusta L. Resistance of Phaseolus species to ice crystallization at subzero temperature. Physiologia Plantarum. 2004, 120(3):451-457.

Funding

Protection and Utilization for Crop Germplasm Resources;the China Agriculture Research System(CARS-08);the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences
Share on Mendeley
PDF(15811 KB)

33

Accesses

0

Citation

Detail

Sections
Recommended

/