Mining Superior Alleles in Crop Germplasm Resources: Advances and Perspectives

WU Jing and L Yu

PDF(1429 KB)
PDF(1429 KB)
Journal of Plant Genetic Resources ›› 2019, Vol. 20 ›› Issue (6) : 1380-1389. DOI: 10.13430/j.cnki.jpgr.20190527001
Review

Mining Superior Alleles in Crop Germplasm Resources: Advances and Perspectives

  • WU Jing, L Yu
Author information +
History +

Abstract

The superior and/or novel alleles (even rare alleles) for a particular trait are often detectable in crop germplasm resources. Exploration and application of allelic variations in crop genetic improvement is one of the tasks in the field of germplasm resources. Allele mining, which is an important tool in deciphering the genetic diversity, the origin and evolution, the molecular mechanism of important agriculture traits as well as germplasm innovation, etc., is the cornerstone of crop breeding by molecular design. There is a great demand on development of high-throughput, efficient allelic mining approaches, in order to accelerate the discovery of excellent alleles and their application in future crop improvement. For this purpose, here we review the major methods of the allelic discovery and propose the research priorities and focuses.

Key words

germplasm resources; mining allele;genetic improvement

Cite this article

Download Citations
WU Jing and L Yu. Mining Superior Alleles in Crop Germplasm Resources: Advances and Perspectives. Journal of Plant Genetic Resources. 2019, 20(6): 1380-1389 https://doi.org/10.13430/j.cnki.jpgr.20190527001

References

1.Rangan L, Constantino S, Khush G S, Swaminathan M S, Bennett J. The feasibility of PCR based allele mining for stress tolerance genes in rice and related germplasm. Rice Genetics Newslett, 1999, 16: 43-47
2.Latha R, Rubia L, Bennett J, Swaminathan MS. Allele mining for stress tolerance genes in Oryza species and related germplasm. Molecular Biotechnology, 2004, 27(2):101-108
3.Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially or superficially?. DNA Research, 2009, 16(3): 141-154
4.Guo M, Yang S, Rupe M, Hu B, Bickel D R, Oscar L A. Genome wide allele-specific expression analysis using massively parallel signature sequencing (MPSS?) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue. Plant Molecular Biology, 2008, 66(5): 551-563
5.Kolev S, Vassilev D, Kostov K, Todorovska E. Allele variation in loci for adaptive response in Bulgarian wheat cultivars and landraces and its effect on heading date. Plant Genetic Resources, 2011, 9(2): 251-255
6.Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600
7.Kumar G R, Shakthivel K, Sundaram R M, Neerja C N, Rani N S, Viraktamath B C, Madhav M S. Allele mining in crops: prospects and potentials. Biotechnology Advance, 2010, 28(4): 451-461
8.Comai L, Young K, Till B J, Reynolds S H, Greene E A, Codomo C A, Enns L C, Johnson J E, Burtner C, Odden A R. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal, 2004, 37(5): 778-786
9.McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiology, 2000, 123(2):439-442
10.Cooper J L, Till B J, Laport R G, Darlow M C, Kleffner J M, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu K D, Meksem K, Comai L, Henikoff S. TILLING to detect induced mutations in soybean. BMC Plant Biology, 2008, 8:9
11.Nieto C, Piron F, Dalmais M, Marco C F, Moriones E, Gómez-Guillamón M L, Truniger V, Gómez P, Garcia-Mas J, Aranda M A, Bendahmane A. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology, 2007, 7:34
12.Qiu P, Shandilya H, D''Alessio J M, O''Connor K, Durocher J, Gerard G F. Mutation detection using surveyor nuclease. Biotechniques, 2004, 36(4):702-707
13.Sato Y, Shirasawa K, Takahashi Y, Nishimura M, Nishio T. Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using brassica petiole extract. Breeding Science, 2006, 56(2):179-183
14.Rungis D, Hamberger B, Yanik Bérubé, Wilkin, J, Bohlmann J, Ritland K. Efficient genetic mapping of single nucleotide polymorphisms based upon DNA mismatch digestion. Molecular Breeding, 2005, 16(3), 261-270
15.Rakshit S A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita N T, Terauchi R. Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theoretical and Applied Genetics, 2007, 114, 731-743
16.Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling H, Zhang A. Novel natural allelic variations at the Rht-1 loci in wheat. Journal of Integrative Plant Biology, 2013, 55(11): 1026-1037
17.Ma X , Sajjad M, Wang J, Yang W,SSun J,SLi X,SZhang A,SLiu D. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17(1):158
18.Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A. EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breeding, 2006, 125(5): 461-467
19.Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu K K, Keller B, Schulze-Lefert P. Diversity at the Mla Powdery Mildew resistance locus from cultivated barley reveals sites of positive selection. Molecular Plant-Microbe Interactions, 2010, 23(4): 497-509
20.Negrao S, Almadanim C, Pires I, Mcnally K L, Oliveira M M. Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources, 2011, 9(2):300-304
21.Tamiru M, Abe A, Utsushi H, Yoshida K, Takagi H, Fujisaki K, Undan J R, Rakshit S, Takaichi S, Jikumaru Y, Yokota T, Terry M J, Terauchi R. The tillering phenotype of the rice plastid terminal oxidase (PTOX) loss-of-function mutant is associated with strigolactone deficiency. New Phytologist, 2014, 202(1): 116-131
22.Pham A T, Bilyeu K, Chen P, Boerma H R, Li Z. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes. Molecular Breeding, 2014, 33(4): 895-907
23.Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytologist, 2010,185(3): 841-851
24.Biselli C, Urso S, Tacconi G, Steuernagel B, Schulte D, Gianinetti A, Bagnaresi P, Stein N, Cattivelli L, Valè G. Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theoretical and Applied Genetics, 2013, 126(6): 1575-1586
25.Li L, Li H, Li Q, Yang X, Zheng D, Warburton M, Chai Y, Zhang P, Guo Y, Yan J, Li J. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE, 2011, 6(9): e24699
26.Zheng H, Wang H, Yang H, Wu J, Shi B, Cai R, Xu Y, Wu A, Luo L. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS ONE, 2013, 8(6): e66606
27.Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. The Plant Cell, 2017, 29(7): 1622-1641
28.Sayama T, Ono E, Takagi K, Takada Y, Horikawa M, Nakamoto Y, Hirose A, Sasama H, Ohashi M, Hasegawa H, Terakawa T, Kikuchi A, Kato S, Tatsuzaki N, Tsukamoto C, Ishimoto M. The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. The Plant Cell, 2012, 24(5): 2123-2138
29.Basu U, Upadhyaya H D, Srivastava R, Daware A, Malik N, Sharma A, Bajaj D, Narnoliya L, Thakro V, Kujur A, Tripathi S, Bharadwaj C, Hegde V S, Pandey A K, Singh A K, Tyagi A K, Parida S K. ABC transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea. Plant Physiology. 2019, 180(1):253-275
30.Sundaramoorthy J, Park G T, Mukaiyama K, Tsukamoto C, Chang J H, Lee J D, Kim J H, Seo H S, Song J T. Molecular elucidation of a new allelic variation at the Sg-5 gene associated with the absence of group A saponins in wild soybean. PLoS ONE, 2018, 13(1): e0192150
31.Bhullar N K, Zhang Z, Wicker T, Keller B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biology, 2010, 10(1): 88
32.Hou J, Jiang Q, Hao C, Wang Y, Zhang H, Zhang X. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164(4): 1918-1929
33.Ingole Kishor D, Prashanthi S K, Krishnaraj P U. Mining of blast resistance gene, Pi2 and its novel allelic variant from landraces of rice from Karnataka. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2017, 87(4):1429-1441
34.Vasudevan K, Gruissem W, Bhullar N K. Identification of novel alleles of the rice blast resistance gene Pi54. Scientific Reports, 2015, 5:15678
35.Fu Z, Chai Y, Zhou Y, Yang X, Warburton M L, Xu S, Cai Y, Zhang D, Li J, Yan J. Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theoretical and Applied Genetics, 2013, 126(4): 923-935
36.De La Fuente G N, Murray S C, Isakeit T, Park Y S, Yan Y, Warburton M L, Kolomiets M V. Characterization of genetic diversity and linkage disequilibrium of ZmLOX4 and ZmLOX5 loci in maize. PLoS ONE, 2013, 8(1): e53973
37.Xu C, Nezami Ranjbar M R, Wu Z, DiCarlo J, Wang Y. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genomics, 2017, 18(1):5
38.Hiatt J B, Pritchard C C, Salipante S J, O’Roak B J, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Research, 2013, 23(5):843-854
39.Giolai M, Paajanen P, Verweij W, Witek K, Jones J D G, Clark M D. Comparative analysis of targeted long read sequencing approaches for characterization of a plant''s immune receptor repertoire. BMC Genomics, 2017, 18(1):564
40.Witek K, Jupe F, Witek AI, Baker D, Clark M D, Jones J D. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34(6):656-660
41.Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K,Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8): 957-961
42.Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, St?dler T, Renner S S, Kamoun S, Lucas W J, Zhang Z, Huang S. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45 (12): 1510-1518
43.Du X,SHuang G,SHe S,SYang Z,SSun G,SMa X,SLi N,SZhang X,SSun J,SLiu M,SJia Y,SPan Z,SGong W,SLiu Z,SZhu H,SMa L,SLiu F,SYang D,SWang F,SFan W,SGong Q,SPeng Z,SWang L,SWang X,SXu S,SShang H,SLu C,SZheng H,SHuang S,SLin T,SZhu Y,SLi F. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50(6): 796-802
44.Varshney R K,SSaxena R K,SUpadhyaya H D,SKhan A W,SYu Y,SKim C,SRathore A,SKim D,SKim J,SAn S,SKumar V,SAnuradha G,SYamini K N,SZhang W,SMuniswamy S,SKim J S,SPenmetsa R V,Svon Wettberg E,SDatta S K. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 2017, 49(7): 1082-1088
45.Varshney R K,SThudi M,SRoorkiwal M,SHe W,SUpadhyaya H D,SYang W,SBajaj P,SCubry P,SRathore A,SJian J,SDoddamani D,SKhan A W,SGarg V,SChitikineni A,SXu D,SGaur P M,SSingh N P,SChaturvedi S K,SNadigatla G V P R,SKrishnamurthy L,SDixit G P,SFikre A,SKimurto P K,SSreeman S M,SBharadwaj C,STripathi S,SWang J,SLee S H,SEdwards D,SPolavarapu K K B,SPenmetsa R V,SCrossa J,SNguyen H T,SSiddique K H M,SColmer T D,SSutton T,Svon Wettberg E,SVigouroux Y,SXu X,SLiu X. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51(5): 857-864
46.Romay M C, Millard M J, Glaubitz J C, Jason A, Peiffer J A, Swarts K L, Casstevens T M, Elshire R J, Acharya C B, Mitchell S E, Flint-Garcia S A, McMullen M D, Holland J B, Edward S, Buckler E S, Gardner C A. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 2013, 14(6): R55
47.Tardivel A, Sonah H, Belzile F, O’Donoughue L S. Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Genome, 2014, 7(2): 1-9
48.Milner S G, Jost M, Taketa S, Mazón E R, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, K?nig P, Schüler D, Sharma R, Pasam RK, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger S G, Keller B, Jiang Y, González MY, Zhao Y, Habeku? A, F?rber S, Ordon F, Lange M, B?rner A, Graner A, Reif JC, Scholz U, Mascher M, Stein N. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019,51(2): 319-326
49.Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X. Pan-genome analsyis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 2018, 50(2): 278-284
50.Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C, Lu J, Zhang D, Li Z, Wei C. RPAN: rice pan-genome browser for ~3000 rice genomes. Nucleic Acids Research, 2017, 45(2):597-605
51.Lu F, Romay M C, Glaubitz J C, Bradbury P J, Elshire R J, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez A G, Mikel M A, Soifer I, Barad O, Buckler ES. High-resolution genetic mapping of maize pan-genome sequence anchors. Nature Communications, 2015, 6:6914
52.Li Y H, Zhou G, Ma J, Jiang W, Jin L G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S S, Zuo Q, Shi X H, Li Y F, Zhang W K, Hu Y, Kong G, Hong H L, Tan B, Song J, Liu Z X, Wang Y, Ruan H, Yeung C K, Liu J, Wang H, Zhang L J, Guan R X, Wang K J, Li W B, Chen S Y, Chang R Z, Jiang Z, Jackson S A, Li R, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32(10):1045-1052
53.Golicz A A, Bayer P E, Barker G C, Edger P P, Kim H, Martinez P A, Chan C K, Severn-Ellis A, McCombie W R, Parkin I A, Paterson A H, Pires J C, Sharpe A G, Tang H, Teakle G R, Town C D, Batley J, Edwards D. The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7:13390
54.Ou L, Li D, Lv J, Chen W, Zhang Z, Li X, Yang B, Zhou S, Yang S, Li W, Gao H, Zeng Q, Yu H, Ouyang B, Li F, Liu F, Zheng J, Liu Y, Wang J, Wang B, Dai X, Ma Y, Zou X. Pan-genome of cultivated peper (Capsicum) and its use in gene presence-absence variation. New Phytologist, 2018, 220(2):360-363
55.Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8):1023-1028
56.Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18(12):1199-1209
57.Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12):1266-1269
58.Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8):950-954
59.Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52):21534-21539
60.Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537(7622):629-633
61.Wang J,SZhou L,SShi H,SChern M,SYu H,SYi H,SHe M,SYin J,SZhu X,SLi Y,SLi W,SLiu J,SWang J,SChen X,SQing H,SWang Y,SLiu G,SWang W,SLi P,SWu X,SZhu L,SZhou J M,SRonald P C,SLi S,SLi J,SChen X. A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361(6406): 1026-1028
62.Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature,1999, 400 (6741):256-261
63.Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Molecular Characterization of Rht-1 Dwarfing Genes in Hexaploid Wheat. Plant Physiology, 2011, 157 (4): 1820-1831
64.Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiology, 2011, 157(4): 2120-2130
65.Li A, Yang W, Guo X, Liu D, Sun J, Zhang A. Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Molecular Breeding, 2012, 30(3):1443-1451
66.Thornsberry J M, Goodman M M, Doewbley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28(3): 286-289
67.Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54(4): 357-374
68.Chan A N, Xu S, Shi Y, Li Y, Guo D, Xue J. Identification of favorable alleles in the non-yellow coloring 1 gene by association mapping in maize. Euphytica, 2017, 213(1):12
69.Wu W, Zheng X, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H, Wang Q, Zhou K, Wang J, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8):2775-2780
70.Zhang Y, Zhang Z, Sun X, Zhu X, Li B, Li J, Guo H, Chen C, Pan Y, Liang Y, Xu Z, Zhang H, Li Z. Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica. Plant Biotechnology Journal. 2019 Jan 21. doi: 10.1111/pbi.13080
71.Kaur N, Street K, Mackay M, Yahiaoui N, Keller B. Allele mining and sequence diversity at the wheat powdery mildew resistance locus Pm3. Proceedings of the 11<sup>th</sup> International Wheat Genetics Symposium, Sydney; 2008. p. 1-3
72.Vasudevan K, Vera Cruz C M, Gruissem W, Bhullar N K. Geographically distinct and domain-specific sequence variations in the alleles of rice blast resistance gene Pib. Frontiers in Plant Science, 2016,7:915
73.Karn A, Gillman JD, Flint-Garcia SA. Genetic analysis of teosinte alleles for kernel composition traits in maize. Genes Genomes Genetics, 2017, 7(4):1157-1164
74.Dwivedi S L, Scheben A, Edwards D, Spillane C, Ortiz R. Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Frontiers in Plant Science, 2017, 8:1461
75.Ohgami T, Uchiyama D, Ue S, Yui-Kurino R, Yoshida Y, Kamei Y, Kuroda Y, Taguchi K, Kubo T. Identification of molecular variants of the nonrestoring restorer-of-fertility 1 allele in sugar beet (Beta vulgaris L.).Theoretical and Applied Genetics, 2016, 129(4):675-688
76.Mayer M, Unterseer S, Bauer E, de Leon N, Ordas B, Sch?n C C. Is there an optimum level of diversity in utilization of genetic resources?. Theoretical and Applied Genetics, 2017, 130(11):2283-2295
77.Bimolata W, Kumar A, M S K, Sundaram R M, Laha G S, Qureshi IA, Ghazi I A. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice. PLoS ONE, 2015, 10(3):e0120186
78.Cao D, Wang H, Zhang B, Liu B, Liu D, Chen W, Zhang H. Genetic diversity of avenin-like b genes in Aegilops tauschii Coss. Genetica, 2018, 146(1):45-51
79.Qin L, Hao C, Hou J, Wang Y, Li T, Wang L, Ma Z, Zhang X. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biology, 2014, 14:107
80.Qian L, Hickey L T, Stahl A, Werner C R, Hayes B, Snowdon R J, Voss-Fels K P. Exploring and harnessing haplotype diversity to improve yield stability in crops. Frontiers in Plant Science, 2017, 8:1534
81.Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot J M, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater J M. Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biology, 2014, 14: 209
82.Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis.STheoretical and Applied Genetics, 2015,S128(1):131-143
83.Chen J,SGao H,SZheng X M,SJin M,SWeng J F,SMa J,SRen Y,SZhou K,SWang Q,SWang J,SWang JL,SZhang X,SCheng Z,SWu C,SWang H,SWan JM. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. The Plant Journal, 2015,83(3): 427-438
84.Kremling K A G,SChen S Y,SSu M H,SLepak N K,SRomay M C,SSwarts K L,SLu F,SLorant A,SBradbury P J,SBuckler E S. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature, 2018, 555(7697):520-523
85.Fontecha G, Silva-Navas J, Benito C, Mestres M A, Espino F J, Hernández-Riquer M V, Gallego F J. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics, 2007, 114(2):249-260
86.Takanokai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182(4):1323-1334.
87.Zhang C,SGao L,SSun J,SJia J,SRen Z. Haplotype variation of green revolution gene Rht-D1 during wheat domestication and improvement. Journal of Integrative Plant Biology, 2014, 56 (8): 774-780
88.Zhang L, Zhao Y L, Gao L F, Zhao G Y, Zhou R H, Zhang B S, Jia J Z. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist, 2012,195(3): 574-584
89.Lundstr?m M, Leino M W, Hagenblad J. Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genetics, 2017,18(1):118
90.Wang Y, Hou J, Liu H, Li T, Wang K, Hao C, Liu H, Zhang X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany, 2019, 70(5):1497-1511
91.Zhang Y, Hu X, Islam S, She M, Peng Y, Yu Z, Wylie S, Juhasz A, Dowla M, Yang R, Zhang J, Wang X, Dell B, Chen X, Nevo E, Sun D, Ma W. New insights into the evolution of wheat a venin-like proteins in wild emmer wheat (Triticum dicoccoides). Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):13312-13317
92.Blackman B K, Scascitelli M, Kane N C, Luton H H, Rasmussen D A, Bye R A, Lentz D L, Rieseberg L H. Sunflower domestication alleles support single domestication center in eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34):14360-14365
93.Li Y, Tong L, Deng L, Liu Q, Xing Y, Wang C, Liu B, Yang X, Xu M. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theoretical and Applied Genetics, 2017, 130(12):2587-2600
94.Yu J,SMiao J,SZhang Z,SXiong H,SZhu X,SSun X,SPan Y,SLiang Y,SZhang Q,SAbdul Rehman RM,SLi J,SZhang H,SLi Z. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnology Journal, 2018, 16(9): 1667-1678
95.Lu S,SZhao X,SHu Y,SLiu S,SNan H,SLi X,SFang C,SCao D,SShi X,SKong L,SSu T,SZhang F,SLi S,SWang Z,SYuan X,SCober ER,SWeller JL,SLiu B,SHou X,STian Z,SKong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49 (5):773-779
96.Huang C L, Hwang S Y, Chiang Y C, Lin T P. Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics, 2018, 179(3): 1527-1538
97.Wang J, Sun J, Liu D, Yang W, Wang D, Tong Y, Zhang A. Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele. Journal of Cereal Science, 2008, 48(3): 836-842
98.Ramkumar G, Biswal A, Mohan K, Sakthivel K, Sivaranjani A, Neeraja C. Identifying novel alleles of rice blast resistance genes Pik h and Pita through allele mining. International Rice Research Notes, 2010, 1-6
99.Kumari A, Das A, Devanna B, Thakur S, Singh P, Singh N, Sharma T. Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on phenotypic expression of the alleles. European Journal of Plant Pathology, 2013, 137(1): 55-65
100.Hittalmani S, Kahani F, Dhanagond SM, Rao AM. DNA marker characterization for allele mining of blast and bacterial leaf blight resistant genes and evaluation for grain yield. African Journal of Biotechnology, 2013, 12 (18): 2331-2340
101.Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170(1): 114-126
102.Jordan KW,SWang S,SLun Y,SGardiner LJ,SMacLachlan R,SHucl P,SWiebe K,SWong D,SForrest K L;SIWGS Consortium,SSharpe AG,SSidebottom CH,SHall N,SToomajian C,SClose T,SDubcovsky J,SAkhunova A,STalbert L,SBansal U K,SBariana H S,SHayden M J,SPozniak C,SJeddeloh J A,SHall A,SAkhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes.SGenome Biology, 2015,S16:48
103.Clevenger J P, Korani W, Ozias-Akins P, Jackson S. Haplotype-based genotyping in polyploids. Frontiers in Plant Science, 2018, 9:564
104.Yang N, Xu X W, Wang R R, Peng W L, Cai L, Song J M, Li W, Luo X, Niu L, Wang Y, Jin M, Chen L, Luo J, Deng M, Wang L, Pan Q, Liu F, Jackson D, Yang X, Chen L L, Yan J. Contributions of Zea mays subspecies Mexican a haplotypes to modern maize. Nature Communications, 2017, 8(1):1874
105.Gore M A, Chia J M, Elshire R J, Sun Q, Ersoz E S, Hurwitz B L, Peiffer J A, McMullen M D, Grills G S, Ross-Ibarra J, Ware D H, Buckler E S. A first-generation haplotype map of maize. Science, 2009, 326 (5956): 1115-1117
106.Chia J, Song C, Bradbury P, Costich D, de Leon N, Doebley J, ElshireR, Gaut B, Geller L, Glaubitz J, Gore M, Guill K, Holland J, HuffordM, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J,Prasanna B, Pyhajarvi T, Rong T, Sekhon R, Sun Q, Tenaillon M, TianF, Wang J, Xu X, Zhang Z, Kaeppler S, Ross-Ibarra J, McMullen M,Buckler E, Zhang G, Xu Y, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44(7):803-807
107.Hufford M, Xu X, van Heerwaarden J, Pyhajarvi T, Chia J, Cartwright R, Elshire R, Glaubitz J, Guill K, Kaeppler S, Lai J, Morrell P,Shannon L, Song C, Springer N, Swanson-Wagner R, Tiffin P, Wang J, Zhang G, Doebley J, McMullen M, Ware D, Buckler E, Yang S, Ross-Ibarra J. Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012, 44(7): 808-811
108.Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E,Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453-458
109.Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, Li J, Jian M, Wang J, Shao G H, Wang J, Sun S S-M, Zhang G Y. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42(12): 1053-1059
110.Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J J, Chetelat R T, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46(11): 1220-1226
111.Xu X, Liu X, Ge S, Jensen J, Hu F, Li X, Dong Y, Gutenkunst R, FangL, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30(1): 105-111
112.Ma Z,SHe S,SWang X,SSun J,SZhang Y,SZhang G,SWu L,SLi Z,SLiu Z,SSun G,SYan Y,SJia Y,SYang J,SPan Z,SGu Q,SLi X,SSun Z,SDai P,SLiu Z,SGong W,SWu J,SWang M,SLiu H,SFeng K,SKe H,SWang J,SLan H,SWang G,SPeng J,SWang N,SWang L,SPang B,SPeng Z,SLi R,STian S,SDu X. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018, 50(6):803-813
113.Huang X, Kurata N, Wei X, Wang Z, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490(7421): 497-501
114.Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44(1):32-39
115.Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi I H, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L. (2019). Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Molecular Plant, 2019, 12(1): 30-43
116.Fang L,SWang Q,SHu Y,SJia Y,SChen J,SLiu B,SZhang Z,SGuan X,SChen S,SZhou B,SMei G,SSun J,SPan Z,SHe S,Xiao S,SShi W,SGong W,SLiu J,SMa J,SCai C,SZhu X,SGuo W,SDu X,SZhang T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7): 1089-1098
117.He Y, Yang B, He Y, Zhan C, Cheng Y, Zhang J, Zhang H, Cheng J, Wang Z. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal, 2018, 97(6):1089-1104
118.Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767
119.Jiang K, Liberatore K L, Park S J, Alvarez J P, Lippman Z B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genetics, 2013, 9(12):e1004043
120.Krieger U, Lippman Z B, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genetics, 2010, 42 (5):459-463
121.Qian Q, Guo L, Smith S M, Li J. Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 2016, 3:283-294
122.Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015,160(6):1209-1221
123.Zhang X, Yang S, Zhou Y, He Z, Xia X. Distribution of the rht-b1b, rht-d1b and rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica, 2006, 152(1): 109-116
124.Zhang B, Xu W, Liu X, Mao X, Li A, Wang J, Chang X, Zhang X, Jing R. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-Box genes governing yield-related traits in hexaploid wheat. Plant Physiology, 2017, 174(2), 1177-1191
125.Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497
126.Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802
127.Wang D C. Guo, J. Huang, S. Yang, D. Tian, X. Zhang, Allele-mining of rice blast resistance genes at AC134922 locus. Biochemical and Biophysical Research Communications, 2014, 446(4): 1085-1090
128.Joshi B K, Bimb H P, Parajuli G, Chaudhary B. Molecular tagging, allele mining and marker aided breeding for blast resistance in rice. BSN E-Bulletin, 2009, 1:1-23
129.Ramkumar G, Srinivasarao K, Mohan K M, Sudarshan I, Sivaranjani A, Gopalakrishna K, Neeraja C, Balachandran S, Sundaram R, Prasad M. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pik h). Molecular Breeding, 2011, 27 (1):129-135
130.Bhullar N K, Street K, Mackay M, Yahiaoui N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(23):9519 -9524
131.Ellis M, Spielmeyer W, Gale R, Rebetzke J, Richards A. ‘‘Perfect’’ markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105(6-7):1038-1042
132.Bazhenov M S, Divashuk M G, Amagai Y, Watanabe N, Karlov G I. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Molecular Breeding, 2015,S35(11):1-8
133.Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice. Plant Biotechnology Journal, 2005, 3(3):363-370
134.Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma TR, Singh K N. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding, 2008, 21(1):49-65
135.Shi W, Yang Y, Chen S, Xu M. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding, 2008, 22(2):185-192
136.Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant Cell, 2008, 20(7):1850-1861
137.Kovach M J, Calingacion M N, Fitzgerald M A, McCouch S R. The origin and evolution of fragrance in rice (Oryza sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34):14444-14449
138.Sakthivel K, Shobha Rani N, Pandey M K, Sivaranjani A K P, Neeraja C N, Balachandran S M, Sheshu Madhav M, Viraktamath B C, Prasad G S V, Sundaram R M. Development of a simple functional marker for fragrance in rice and its validation in Indian Basmati and non-Basmati fragrant rice varieties. Molecular Breeding, 2009, 24(2):185-190
139.Sakthivel K, Sundaram R M, Shoba Rani N, Neeraja C N. Genetic and molecular basis of fragrance in rice. Biotechnology Advances, 2009, 27(4):468-473
140.Sun X, Gao F, Lu X, Wu X, Wang X, Ren G, Luo H. Genetic analysis and gene fine mapping of aroma in rice (oryza sativa l. cyperales, poaceae).SGenetics and Molecular Biology,S2008, 31(2), 532-538
141.Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice. Theoretical and Applied Genetics, 2008, 116(7):979-989
142.Jiang L, Ma X, Zhao S, Tang Y, Liu F, Gu P, Fu Y, Zhu Z, Cai H, Sun C, Tan L. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell, 2019, 31(1):17-36
143.乐素菊, 刘鹏飞, 曾慕衡, 王伟权,王晓明. 超甜玉米bt2基因SNP位点的分析及分子标记辅助筛选. 西北农林科技大学学报(自然科学版), 2012, 40(11):73-78 Le S J, Liu P H, Zeng M H, Wang W Q, Wang X M. Protomer region of super sweet corn bt2 gene and development of molecular marker-assisted selection. Journal of Northwest A F University (Nat. Sci. Ed.), 2012, 40(11):73-78
144.Li L, Paulo M J, Strahwald J, Lübeck J, Hofferbert H R, Tacke E, Junghans H, Wunder J, Draffehn A, van Eeuwijk F, Gebhardt C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116(8):1167-1181
145.Li L, Paulo M J, van Eeuwijk F, Gebhardt C. Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theoretical and Applied Genetics, 2010, 121(7):1303-1310
146.Li L, Tacke E, Hofferbert H R, Lübeck J, Strahwald J, Draffehn A M, Walkemeier B, Gebhardt C. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theoretical and Applied Genetics, 2013, 126(4): 1039-1052
147.Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 2012, 125(4): 715-729
148.Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O''sullivan DM. Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotypes. Theoretical and Applied Genetics, 2007,115(7):993-1001
149.Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valècorresponding G. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice, 2014; 7(1): 1.
150.Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, Perkins S, Smith J, MacLean D, Olszewski N E, Jones J D G. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnology Journal, 2019, 17(1): 132-140
151.Huang L, Zhang R, Huang G, Li Y, Melakua G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. The Crop Journal, 2018, 6(5):475-481
152.Zhang R,SLiu J,SChai Z,SChen S,SBai Y,SZong Y,SChen K,SLi J,SJiang L,SGao C. Generation of herbicide tolerance traits and a new selectable marker in wheat using base. Nature Plants, 2019, doi: 10.1038/s41477-019-0405-0
153.Li T,SYang X,SYu Y,SSi X,SZhai X,SZhang H,SDong W,SGao C,SXu C. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36 (12):1160-1163
154.Zs?g?n A, ?ermák T, Naves E R, Notini M M, Edel K H, Weinl S, Freschi L, Voytas D F, Kudla J, Peres L E P. de novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36 (12): 1211-1216

Funding

Protection and Utilization for Crop Germplasm Resources; the China Agriculture Research System (CARS-08); the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences
Share on Mendeley
PDF(1429 KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

/