Identification of Candidate Genes Associating with Fiber Lint Percentage Using BSA-seq

ZHAO Yan,FENG Jia-jia,Zhang Li,XIAO Xiang-hui,Zhang Jinlong,Chen Yi,HUANG Jin-ling,LU Quan-wei and QU Yun-fang

PDF(4691 KB)
PDF(4691 KB)
Journal of Plant Genetic Resources ›› 2021, Vol. 22 ›› Issue (6) : 1723-1731. DOI: 10.13430/j.cnki.jpgr. 20210421002
Research Articles

Identification of Candidate Genes Associating with Fiber Lint Percentage Using BSA-seq

  • ZHAO Yan1,2,FENG Jia-jia1,2,XIAO Xiang-hui2,HUANG Jin-ling1,LU Quan-wei2,QU Yun-fang1
Author information +
History +

Abstract

Lint percentage is an important index affecting cotton fiber yield. In this study, an F2 segregation population containing 2403 individual plants was constructed derived from chromosome introgression line MBI 7747-14 (Gossypium barbadense x Gossypium hirsutum) with high lint percentage crossing with CCRI 45. The BSA-seq was conducted using two bulked samples by pooling individual plants showing higher and lower lint percentage, respectively. As a result, four candidate physical regions showing confidence indices higher than 95% were obtained in a total length of 5.47 Mb on chromosome D02, which contained 236 annotated genes. Out of them, 200 genes contain SNPs, 190 genes contain Indel, and 70 genes contain non-synonymous mutation sites. Through gene expression pattern analysis of transcriptome data, 19 candidate genes possibly associating with lint percentage were identified. GO functional enrichment analysis showed that the 19 candidate genes were enriched in NADP+ activity, aldol metabolism, carbon utilization and regulation of cell development. KEGG analysis showed that the 19 candidate genes were mainly involved in pathway such as ABC transport and phenylpropane biosynthesis. Collectively, this study laid a foundation for further analyzing the genetic mechanism of cotton fiber lint percentage formation.

Key words

Lint percentage / BSA-seq / QTL

Cite this article

Download Citations
ZHAO Yan,FENG Jia-jia,Zhang Li,XIAO Xiang-hui,Zhang Jinlong,Chen Yi,HUANG Jin-ling,LU Quan-wei and QU Yun-fang. Identification of Candidate Genes Associating with Fiber Lint Percentage Using BSA-seq. Journal of Plant Genetic Resources. 2021, 22(6): 1723-1731 https://doi.org/10.13430/j.cnki.jpgr. 20210421002

References

[1] Shi Y Z, LI W T, LI A G, Ge R H, Zhang B C, Li J Z, Liu G P, Li J W, Liu A Y, Shang H H, Gong J W, Gong W K, Yang Z M, Tang F, Liu Z, Zhu W P, Jiang J X, Yu X N, Wang T, Wang W, Chen T, Chen T B, Zhang Z S, Zhang Z L. Constructing a high-density linkage map for Gossypium hirsutum x Gossypium barbadense and identifying QTLs for lint percentage. Journal of Integrative Plant Biology, 2015, 57(5): 450-467.
[2] Liu D X, Liu F, Shan X R, Zhang J, Tang S Y, Fang X M, Liu X Y, Wang W W, Tan Z Y, Teng Z H, Zhang Z S, Liu D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Moleculer Genetics and Genomics, 2015, 290(5): 1683-1700.
[3] 王宁, 苏桂兰, 周红, 许庆华, 黄群, 严根土. 中国与美国棉花品种的铃质量和衣分差异分析. 河南农业科学, 2015, 44(7): 43-47.Wang N, Su G L, Zhou H, Xu Q N, Huang Q, Yan G T. Difference analysis of boll weight and lint index of cotton between Chinese and American varieties. Journal of Henan Agricultural Sciences, 2015, 44(7): 43-47.
[4] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016,49(18): 3465-3476.Yu S X, Fan S L, Wang H T, Wei H L, Pang C Y. Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476.
[5] 袁文娟, 覃鸿妮, 王旭, 王国强, 王久光, 刘志斋, 蔡一林. 玉米雄穗颜色的 QTL 分析. 植物遗传资源学报, 2013, 14(2): 289-297.Yuan W J, Qin H N, Wang X, Wang G Q, Wang J G, Liu Z Z, Cai Y L. Identification of QTL for tassel color in Maize, Journal of Plant Genetic Resources, 2013, 14(2): 289-297.
[6] 朱亚娟, 王鹏, 郭旺珍, 张天真. 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010, 36(8): 1318-1323.Zhu Y J, Wang P, Guo W Z, Zhang T Z. Mapping QTLs for lint percentage and seed index using Gossypium barbadense Chromosome Segment Introgression Lines. Acta Agronomica Sincia, 2010, 36(8): 1318-1323.
[7] YU J W, ZHANG K, LI S Y, Yu S X, Zhai H H, Wu M, Li X L Fan S L, Song M Z, Yang D G, Li Y H, Zhang J F. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126(1): 275-287.
[8] QIN H D, CHEN M, YI X D, Bie S, Zhang C, Zhang C Y, Lan J Y, Meng Y Y, Yuan Y L, Jiao C H. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One, 2015, 10(1): e118073.
[9] 焦梦佳, 陈煜, 宋章强, 霍雪寒, 高阳, 周娟, 王静静, 潘奥, 赵程杰, 王芙蓉, 张军. 利用棉花优质渐渗系进行纤维品质性状和衣分的 QTL 定位. 植物遗传资源学报, 2020, 21(3): 716-726.Jiao M J, Chen Y, Song Z Q,Cui X H, Gao Y, Zhou J, Wang J J, Pan A, Zhao C J, Wang F R, Zhang J. QTL mapping for fiber quality and lint percentage traits of cotton using elite germplasm with introgression of Gossypium barbadense L. Journal of Plant Genetic Resources, 2020, 21(3): 716-726.
[10] Teng C C, Du D Z, XIAO L, Yu Q L, Shang G X, Zhao Z G. Mapping and identifying a candidate gene (Bnmfs) for Female-Male sterility through whole-genome resequencing and RNA-Seq in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8: 2086.
[11] 徐剑文, 刘剑光, 赵君, 王希睿, 肖松华. 利用 BSA-seq 发掘棉花适宜机采的果枝长度相关QTL. 棉花学报, 2019, 31(4): 319-326.Xu J W, Liu J G, Zhao J, Wang X R, Xiao S H. The identification of QTL associated with cotton fruit branch length suitable for mechanized harvest utilizing BSA-seq. Cotton Science, 2019, 31(4): 319-326.
[12] Pandey M K, Khan A W, Singh V K, Vishwakarma M K, Shasidhar Y, Kumar V, Garg V, Bhat R S, Chitikineni A, Janila P, Guo B Z, Varshney R K. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol Journal, 2017, 15(8): 927-941.
[13] Illa-Berenguer E, Van Houten J, Huang Z J, van der Knaap E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 2015, 128(7): 1329-1342.
[14] Ogiso-Tanaka E, Tanaka T, Tanaka K, Nonoue Y, Sasaki T, Fushimi E, Koide Y, Okumoto Y, Yano M, Saito H. Detection of novel QTLs qDTH4.5 and qDTH6.3, which confer late heading under short-day conditions, by SSR marker-based and QTL-seq analysis. Breeding Science, 2017, 67(2): 101-109.
[15] Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A, Hill T, Chen S Y, Stoffel K, Van Deynze A, Paran I. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. The Plant Journal, 2019, 99(1): 41-55.
[16] Zhu J K, Chen J D, Gao F K, Xu C Y, Wu H T, Chen K, Si Z F, Yan H, Zhang T Z. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. Journal of Experimental Botany, 2017, 68(15): 4125-4135.
[17] 陈鹏云. 棉花早熟性状相关基因的定位与鉴定. 湖南农业大学, 2017.Chen P.Y. Fine Mapping and identification of early maturity related genes in cotton (Gossypium hirsutum L.). Hunan Agricultural University, 2017.
[18] 卢全伟. 陆海渐渗系纤维长度 QTL(qFL-12-2)精细定位与候选基因鉴定. 山西农业大学, 2017.Lu Q W. Fine Mapping and candidate gene identification of qFL-12-2 in Chromosome Introgression Line Carrying Gossypium barbadense Chromosomal Segments in Gossypium hirsutum background. Shanxi Agriculture University, 2017
[19] 马留军. 陆海杂种回交高代染色体片段代换系的评价及 QTL 定位. 中国农业科学院, 2013.Ma L J. The evaluation and QTL identifying of chromosome segment substitution lines in advanced backcross of Gossypium Hirsutum×G. Barbadense. Chinese Academy of Agricultural Sciences, 2013.
[20] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M, Han J L, Wang K, Wang Q, Wu H T, Mei G F, Zang Y H, Han Z G, Xu C Y, Shen W J, Yang D F, Si Z F, Dai F, Zou L F, Huang F, Bai Y L, Zhang Y G, Brodt A, Hilla B H, Zhu X F, Zhou? B L, Guan X Y, Zhu S J, Chen X Y, Zhan T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.
[21] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6(2): 80-92.
[22] Liu G Y, Pei W F, Li D, Ma J J, Cui Y P, Wang N H, Song J K, Wu M, Li L B, Zang X S, Yu S X, Zhang J F, Yu J W. A targeted QTL analysis for fiber length using a genetic population between two introgressed backcrossed inbred lines in upland cotton ( Gossypium hirsutum ). The Crop Journal, 2018.
[23] Wang H, Cheng H T, Wang W X, Liu J, Hao M Y, Mei D S, Zhou R J, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Scientific Reports, 2016, 6: 38493.
[24] Song J, Li Z, Liu Z X, Guo Y, Qiu L J. Next-Generation Sequencing from Bulked-Segregant Analysis Accelerates the Simultaneous Identification of Two Qualitative Genes in Soybean. Frontiers in Plant Science, 2017, 8: 919.
[25] Guo Z H, Cai L J, Chen Z Q, Wang R Y, Zhang L M, Guan S W, Zhang S H, Ma W D, Liu C X, Pan G J. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. Royal Society Open Science, 2020, 7(11): 201081.
[26] 陈奇, 周水娟, 孙康泰, 刘静, 袁宝童, 王议平, 王为, 王有武, 王保华, 庄志敏. 基于黄褐棉导入系的棉花衣分QTL定位研究. 西南农业学报, 2019, 32(8): 1735-1739.Chen Q, Zhou S J,Sun K T, Liu J, Yuan B T, Wang Y P, Wang W, Wang Y W, Wang B H, Zhuang Z M. QTL mapping of lint percentage in Gossypium mustelinumintrogression line. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1735-1739.
[27] 邓晓英. 杂交棉中棉所70产量和纤维品质性状的QTL定位. 山西农业大学, 2016.Deng X Y. Indentification of QTL for yield and fiber quality traits in hybird cotton CCRI70. Shanxi Agriculture University, 2017.
[28] 刘任重. 湘杂棉2号杂种优势的遗传机理研究. 南京农业大学, 2010.Liu R Z. Study on genetic mechanism of heterosis in hybird cottonXZM2. Nanjing Agricultural University, 2010.
[29] 张保才. AB-QTL法定位海岛棉优异纤维品质基因和抗黄萎病基因. 中国农业科学院, 2006.Zhang B C. QTL Analysis of fiber quality and resistance to verticillium wilt using Gossypium hirsutum×Gossypium barbadense backcross populations. Chinese Academy of Agricultural Sciences, 2006.
[30] 马军, 王芳, 郭玉平, 郭显, 陈霞, 孙学振, 宋宪亮. 高衣分染色体片段导入系 IL-10-1 衣分形成的研究. 山东农业科学, 2012,44(10): 25-29.Ma J, Wang F, Guo Y P, Guo X, Chen X Z, Song X L. Study on lint percentage formation mechanism of chromosome segment introgression line IL -10-1 with high lint percentage. Shandong Agricultural Sciences, 2012, 44(10): 25-29.
[31] 薛宇. 雷蒙德氏棉 HD-Zip 基因家族进化及选择性剪切分析. 浙江农林大学, 2014.Xu Y. Genome-wide analysis of evolution and alternative splicing event of HD-Zip gene family in Gossypium ramondii. Zhejiang A F University, 2014.
[32] 毛玮. 亚洲棉纤维发育关键基因 GaHD1 上游调控因子解析. 浙江农林大学, 2018.Mao W. Analysis of upstream regulatory factors of GaHD1, a key gene for fiber development in Gossypium arboreum. Zhejiang A F University, 2018.
[33] Xu Z Y, Kohel R J, Song G L,Cho J, Alabady M, Yu J, Koo P, Chu J, Yu S X, Wilkins T A, Zhu Y X, Yu J Z. Gene-rich islands for fiber development in the cotton genome. Genomics, 2008, 92(3): 173-183.
[34] Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. The Plant Journal, 2009,58(3): 525-537.
[35] Wang Y B, Song J P, Wang Z B. ASYMMETRIC LEAVES2 - LIKE38, one member of AS2/LOB gene family, involves in regulating ab-adaxial patterning in Arabidopsis lateral organs. Acta Physiologiae Plantarum, 2015, 37(9). 185.
[36] Vanholme R, Cesarino I, Rataj K, Xiao Y G, Sundin L, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson G G, Halpin C, Boerjan W. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science, 2013,341(6150): 1103-1106.
[37] 晁楠. 毛白杨木质素单体生物合成途径关键酶基因家族的功能分化研究. 北京林业大学, 2017.Chao H. Functional divergence of key genes involved in monolignol biosynthesis in Populus tomentosa. Beijing Forestry Universit, 2017.
[38] 王雪纯. 日本落叶松CSE和DHN基因功能分析. 北京林业大学, 2020.Wang X C. Functional analysis of CSE and DHN in Larix kaempfer. Beijing Forestry Universit, 2020.
[39] García-León M, Cuyas L, El-Moneim D A, Rodriguez L, Belda-Palazón B, Sanchez-Quant E, Fernández Y, Roux B, Zamarre?o á M, García-Mina J M, Nussaume L, Rodriguez P L, Paz-Ares J, Leonhardt N, Rubio V . Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. Plant Cell, 2019,31(10): 2411-2429.
[40] Kim G D, Yoo S D, Cho Y H. STABILIZED1 as a heat stress-specific splicing factor in Arabidopsis thaliana. Plant Signal Behav, 2018,13(2): e1432955.
[41] Lee B H, Kapoor A, Zhu J, Zhu J K. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell, 2006,18(7): 1736-1749.
[42] RuanY L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell, 2001,13(1): 47-60.
[43] 张驰. 陆地棉纤维品质和产量性状的全基因组关联分析及候选基因的功能验证. 西北农林科技大学, 2020Zhang C, Genome-wide Association Analysis of fiber quality and yield and functional analysis of candidate genes in Upland Cotton. Northwest A F University, 2020.

Funding

National Natural Science Foundation of China (U1804103), Sponsored by State Key Laboratory of Cotton Biology Open Fund (CB2020A10),Doctoral research project of Shanxi Agricultural University (2020BQ46)
Share on Mendeley
PDF(4691 KB)

Accesses

Citation

Detail

Sections
Recommended

/