高粱株高相关基因SbPH11分子标记的开发和应用

段国旗,吕娜,石颖怡,张怀,李斌峰,侯留飞,许文秀,闫慧莉,何振艳,平俊爱

植物遗传资源学报. 2024, 25(1): 111-119

PDF(1059 KB)
PDF(1059 KB)
植物遗传资源学报 ›› 2024, Vol. 25 ›› Issue (1) : 111-119. DOI: 10.13430/j.cnki.jpgr.20230611002
论文

高粱株高相关基因SbPH11分子标记的开发和应用

  • 段国旗1,2,吕娜1,2,石颖怡3,张怀4,李斌峰4,侯留飞5,许文秀3,闫慧莉3,何振艳3,平俊爱1
作者信息 +

Development and Application of Molecular Markers of Sorghum Plant Height Related Gene SbPH11

  • DUAN Guoqi1,2, LYU Na1,2, SHI Yingyi3, ZHANG Huai4, LI Binfeng4, HOU Liufei5, XU Wenxiu3, YAN Huili3, HE Zhenyan3, PING Junai1
Author information +
History +

摘要

生物量是饲用高粱的重要性状,株高与生物量呈正相关性。本研究以237份高粱自交系关联群体为材料,筛选到株高关联基因SbPH11的两个功能性SNP位点,两个SNP位点组合的单倍型共3种:SbPH11-Hap1、SbPH11-Hap2和SbPH11-Hap3,SbPH11-Hap2 所对应的高粱材料的株高极显著高于SbPH11-Hap1和SbPH11-Hap3所对应的高粱材料的株高,SbPH11-Hap1的高粱材料株高极显著高于SbPH11-Hap3的高粱材料株高。针对SbPH11的两个功能性SNP位点开发了KASP分子标记,利用该标记对30份高粱种质资源进行了基因分型和表型验证,结果证实开发的KASP分子标记可以准确地鉴定出SbPH11两个功能性SNP位点的基因型。该KASP分子标记可高效准确地预测不同高粱种质资源的株高类型,可应用于高粱株高的早期筛选和分子标记辅助选择育种。

Abstract

Biomass is an important trait in forage sorghum, and positively correlates with plant height. In this study, two functional SNPs of the plant height associated gene SbPH11 were screened from 237 sorghum inbred lines. Three haplotypes, named SbPH11-Hap1, SbPH11-Hap2 and SbPH11-Hap3, at the SbPH11 locus with different combination of the two SNPs have been identified. The plant height of SbPH11-Hap2 materials was extremely significantly higher than that of SbPH11-Hap1 and SbPH11-Hap3 materials, and that of SbPH11-Hap1 materials was extremely significantly higher than that of SbPH11-Hap3 materials. The KASP marker that associates to plant height was developed based on two functional SNPs of the gene SbPH11. The marker was used to genotype and phenotype of 30 sorghum germplasms resources. The KASP marker was confirmed to accurately identify two functional SNPs of SbPH11. These results suggested that the newly-developed KASP marker can efficiently and accurately predict the plant height in sorghum germplasm resources, and can be applied in early screening and molecular marker-assisted selection in breeding for sorghum with higher plant height.

关键词

高粱 / 株高 / KASP分子标记 / SbPH11

Key words

sorghum / plant height / KASP molecular marker / SbPH11

引用本文

导出引用
段国旗,吕娜,石颖怡,张怀,李斌峰,侯留飞,许文秀,闫慧莉,何振艳,平俊爱. 高粱株高相关基因SbPH11分子标记的开发和应用. 植物遗传资源学报. 2024, 25(1): 111-119 https://doi.org/10.13430/j.cnki.jpgr.20230611002
DUAN Guoqi,LYU Na,SHI Yingyi,ZHANG Huai,LI Binfeng,HOU Liufei,XU Wenxiu,YAN Huili,HE Zhenyan,PING Junai. Development and Application of Molecular Markers of Sorghum Plant Height Related Gene SbPH11. Journal of Plant Genetic Resources. 2024, 25(1): 111-119 https://doi.org/10.13430/j.cnki.jpgr.20230611002

参考文献

[1] Landi S, Hausman J F, Guerriero G, Esposito S. Poaceae V S. Abiotic stress: Focus on drought and salt stress, recent insights and perspectives. Frontiers in Plant Science,2017,8:1214
[2]张春霞. Na2CO3胁迫下甜高粱CBL基因家族的表达模式分析及功能初探.长春:吉林大学,2011Zhang C X. The analysis of preliminary function and expression pattern of CBL gene family in sweet sorghum under sodium carbonate stress. Changchun: Jilin University,2011
[3] Yuan F, Leng B, Wang B. Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science,2016,7:977
[4] Yang Z, Li J L, Liu L N, Xie Q, Sui N. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science,2020,10:1722
[5]董明,再吐尼古丽·库尔班,吕芃,杜瑞恒,叶凯,侯升林,刘国庆. 高粱苗期耐盐性转录组分析和基因挖掘.中国农业科学,2019,52(22):3987-4001Dong M, Kuerban Z T N G L, Lü P, Du R H, Ye K, Hou S L, Liu G Q. Transcriptome analysis and gene mining of salt tolerance in sorghum seedlings (Sorghum bicolor L. Moench). Scientia Agricultura Sinica, 2019,52(22):3987-4001
[6]唐朝臣,高建明,韩芸,罗峰,裴忠有,孙守钧. 高粱苗期耐盐碱性QTL定位.华北农学报,2015,30(3):42-47Tang C C, Gao J M, Han Y, Luo F, Pei Z Y, Sun S J. Identification of QTLs associated with complex salt-alkaline tolerance at the seedling stage in sorghum. Acta Agriculturae Boreali-sinica, 2015,30(3):42-47
[7]温黎明. 刈割对黄河三角洲甜高粱产量及光合生理特征的影响.济南:山东师范大学,2019Wen L M. Effect of cutting on yield and photosynthetic physiological characteristics of sweet sorghum in the yellow river delta. Jinan:Shandong Normal University,2019
[8] Vermerris W. Genetic improvement of bioenergy crops. New York:Springer,2008:239
[9] Habyarimana E, Lorenzoni C, Marudelli M, Redaelli R, Amaducci S. A meta-analysis of bioenergy conversion relevant traits in sorghum landraces, lines and hybrids in the Mediterranean region. Industrial Crops and Products,2016,81:100-109
[10] Upadhyaya H D, Wang Y H, Gowda C L L, Sharma S. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theoretical and Applied Genetics,2013,126:2003-2015
[11] Upadhyaya H D, Wang Y H, Sharma S, Singh S. Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome,2012,55:471-479
[12] Wang L, Liu Y, Gao L, Yang X, Zhang X, Xie S, Chen M, Wang Y H, Li J, Shen Y. Identification of candidate forage yield genes in sorghum (Sorghum bicolor L.) using integrated genome-wide association studies and RNA-seq. Frontiers in Plant Science,2022,12:788433
[13] Murray S C, Rooney W L, Mitchell S E, Sharma A, Klein P E, Mullet J E, Kresovich S. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Science,2008,48:2180-2193
[14] Salas Fernandez M G, Becraft P W, Yin Y, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science,2009,14:454-461
[15] Ritter K B, Jordan D R, Chapman S C, Godwin I D, Mace E S, Lynne McIntyre C. Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding,2008,22:367-384
[16] Quinby J R, Karper R E. Inheritance of height in sorghum. Agronomy Journal,1954,46:211-216
[17] Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE,2016,11:e0151271
[18] Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song X J, Ito Y, Nagae R, Wu J, Mizuno H, Yonemaru J, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports,2016,6:28366
[19] Hilley J L, Weers B D, Truong S K, McCormick R F, Mattison A J, McKinley B A, Morishige D T, Mullet J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Scientific Reports,2017,7:4616
[20] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science,2003,302:81-84
[21] Li X, Li X, Fridman E, Tesso T T, Yu J. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proceedings of the National Academy of Sciences,2015,112:11823-11828
[22] Chen J, Xin Z, Laza H. Registration of BTx623 dw5, a new sorghum dwarf mutant. Journal of Plant Registrations,2019,13:254-257
[23] Enyew M, Feyissa T, Carlsson A S, Tesfaye K, Hammenhag C, Seyoum A, Geleta M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Frontiers in Plant Science,2022,13:999692
[24]李珍珠,彭清祥,邱先进,徐俊英,李志新,刘海洋. 水稻分蘖角度基因TIG1功能性分子标记的开发和应用.植物遗传资源学报,2023,24(3):808-816Li Z Z, Peng Q X, Qiu X J, Xu J Y, Li Z X, Liu H Y. Development and application of functional molecular marker of rice tiller angle gene TIG1. Journal of Plant Genetic Resources, 2023,24(3):808-816
[25]杨义强,朱林峰,李晓芳,付杰,黄道强,邱先进,周少川,王重荣. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用. 植物遗传资源学报,2021,22(5):1314-1321Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. Development and application of KASP marker specific for rice blast resistance Pi2 gene. Journal of Plant Genetic Resources, 2021,22(5):1314-1321
[26]徐君,李婷,胡敏骏,蒋玉根,闫慧莉,许文秀,虞轶俊,何振艳. 水稻籽粒镉积累KASP分子标记LCd-38的开发与利用.中国农业科技导报,2022,24(3):40-47Xu J, Li T, Hu M J, Jiang Y G, Yan H L, Xu W X, Yu Y J, He Z Y. Development and utilization of KASP marker LCd-38 for cadmium accumulation in rice grain. Journal of Agricultural Science and Technology, 2022,24(3):40-47
[27] Wu X Y, Liu Y M, Luo H, Shang L, Leng C Y, Liu Z Q, Li Z G, Lu X C, Cai H W, Hao H Q, Jing H C. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Molecular Plant, 2022,15(3):537-551
[28]周瑜,李泽碧,黄娟,吴毓,张亚勤,张志良,张晓春. 高粱种质资源表型性状的遗传多样性分析.植物遗传资源学报,2021,22(3):654-664Zhou Y, Li Z B, Huang J, Wu Y, Zhang Y Q, Zhang Z L, Zhang X C. Genetic diversity of sorghum germplasms based on phenotypic traits. Journal of Plant Genetic Resources, 2021,22(3):654-664
PDF(1059 KB)

Accesses

Citation

Detail

段落导航
相关文章

/