玉米雄性不育突变体ms20s2的表型鉴定与基因定位

周玉强,曹枭雄,王婧,刘伊凡,王红武,李坤,刘小刚,黄长玲,李树强,刘小龙,张亚男,于飞荣,马庆,胡小娇

植物遗传资源学报. 2024, 25(2): 171-183

PDF(2609 KB)
PDF(2609 KB)
植物遗传资源学报 ›› 2024, Vol. 25 ›› Issue (2) : 171-183. DOI: 10.13430/j.cnki.jpgr.20230521001
论文

玉米雄性不育突变体ms20s2的表型鉴定与基因定位

  • 周玉强1,2,曹枭雄2,王婧2,刘伊凡2,王红武2,李坤2,刘小刚2,黄长玲2,李树强3,刘小龙3,张亚男3,于飞荣3,马庆1,胡小娇2
作者信息 +

Phenotypic Identification and Genetic Mapping of Male Sterility Mutant ms20s2 in Maize

  • ZHOU Yuqiang1,2, CAO Xiaoxiong2, WANG Jing2, LIU Yifan2, WANG Hongwu2, LI Kun2, LIU Xiaogang2, HUANG Changling2, LI Shuqiang3, LIU Xiaolong3, ZHANG Yanan3, YU Feirong3, MA Qing1, HU Xiaojiao2
Author information +
History +

摘要

玉米突变体male-sterile 20s2ms20s2)是在玉米自交系KWS49中发现的一个无花粉型雄性不育突变体。与野生型相比,ms20s2突变体花药细小且颜色偏浅,花药内未观察到花粉。扫描电镜观察表明,与野生型相比,9叶期突变体ms20s2的花药中未观察到正在减数分裂的花粉母细胞;抽雄后突变体花药壁外部角质层形成异常,内部未观察到乌式体结构。观察不同发育阶段花药的石蜡切片发现,在S6-S7时期,与野生型相比,ms20s2突变体花药部分中间层和绒毡层细胞发生异常分裂,导致花药壁萎缩,花粉母细胞无法正常进行减数分裂,最终造成花粉母细胞死亡,产生雄性不育表型。遗传分析表明,突变体ms20s2的雄性不育表型受单个隐性核基因控制。利用玉米10K SNP芯片对F2定位群体进行基因型分析,初步将该突变位点定位在玉米2号染色体长臂上6.21 Mb区段内。进一步精细定位将该区间缩小到了590 kb,区间包含一个已知的蛋白编码基因MS32Zm00001eb106620)。对MS32基因进行测序分析,在突变体MS32基因4号外显子上发现了一段3166 bp的大片段插入,可能影响了MS32蛋白功能,造成ms20s2的花药发育异常和雄性不育的表型。等位测验结果表明,突变体ms20s2是雄性不育基因MS32的新等位突变体。组织表达分析发现该基因在玉米花药中特异表达,且仅在花药发育的S6和S7时期表达量较高,进一步验证了该基因在玉米花药绒毡层和中间层细胞发育过程中的重要作用。

Abstract

The maize male-sterile 20s2ms20s2) is a pollen-free genic male sterility mutant that was identified in maize inbred line KWS49. Compared with wild type (WT), the mutant anthers were small and whitish without pollen grains. The scanning electron microscopy (SEM) observations showed that no pollen mother cells undergoing meiosis were observed in the anthers of the ms20s2 at V9 stage. The anther cuticular was abnormal, and failed to generate ubisch bodies on the inner surface of the anther wall of ms20s2 at tasseling stage. By analyzing the paraffin sections of anthers from different developmental stages, some middle layer cells and tapetum cells of the ms20s2 anther underwent abnormal division from S6 to S7 stages compared to WT, leading to the anther wall shrinking, abnormal meiosis and death of the pollen mother cells, and finally male sterility. The segregation analysis in an F2 population revealed that the male sterility of the ms20s2 mutant was controlled by a single recessive nuclear gene. By genotyping with the maize 10K SNP chip, the causal gene was preliminarily mapped to the 6.21 Mb region on the long arm of chromosome 2. The physical interval was further delimited to 590 kb, where a known protein-coding gene MS32Zm00001eb106620) is present. Sequencing analysis of the MS32 gene revealed a 3166 bp insertion in the exon 4 of ms20s2, and this insertion might result in abnormal anther development and male sterility. Allelism test showed that the ms20s2 was a new allelic variation of maize male sterile gene MS32. The MS32 gene was expressed in maize anthers at S6 and S7 stages, which provided additional evidence in regulating the development of tapetum and middle layer of maize anthers.

关键词

玉米 / 突变体ms20s2 / 雄性不育 / 基因定位 / 表型分析

Key words

maize / ms20s2 mutant / male sterility / gene mapping / phenotypic analysis

引用本文

导出引用
周玉强,曹枭雄,王婧,刘伊凡,王红武,李坤,刘小刚,黄长玲,李树强,刘小龙,张亚男,于飞荣,马庆,胡小娇. 玉米雄性不育突变体ms20s2的表型鉴定与基因定位. 植物遗传资源学报. 2024, 25(2): 171-183 https://doi.org/10.13430/j.cnki.jpgr.20230521001
ZHOU Yuqiang,CAO Xiaoxiong,WANG Jing,LIU Yifan,WANG Hongwu,LI Kun,LIU Xiaogang,HUANG Changling,LI Shuqiang,LIU Xiaolong,ZHANG Yanan,YU Feirong,MA Qing,HU Xiaojiao. Phenotypic Identification and Genetic Mapping of Male Sterility Mutant ms20s2 in Maize. Journal of Plant Genetic Resources. 2024, 25(2): 171-183 https://doi.org/10.13430/j.cnki.jpgr.20230521001

参考文献

[1] Wang Y B, Bao J X, Wei X, Wu S W, Fang C W, Li Z W, Qi Y C, Gao Y X, Dong Z Y, Wan X Y. Genetic structure and molecular mechanisms underlying the formation of tassel, anther and pollen in themale inflorescence of Maize (Zea mays L.). Cells, 2022, 11(11):1753
[2]时子文, 何青, 赵卓凡, 刘孝伟, 张鹏, 曹墨菊. 玉米雄性不育资源的发掘与利用. 遗传, 2022, 44(2):134-152Shi Z W, He Q, Zhao Z F, Liu X W, Zhang P, Cao M J. Discovery and utilization of male sterile resources in maize. Hereditas (Beijing), 2022, 44(2):134-152
[3] Goldberg R B, Beals T P, Sanders P M. Anther development: Basic principles and practical applications. Plant Cell, 1993, 5(10):1217-1229
[4] Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology, 2005, 56:393-434
[5] Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. Journal of Genetics and Genomics, 2011, 38(9):379-390
[6] Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, Liu X Z, Zhang S W, He W, Li F, Li J P, Wan X Y. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal, 2021, 19(9):1769-1784
[7] Zhou L Z, Jurani? M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Molecular Plant, 2017, 10(3):389-401
[8] Walbot V, Egger R L. Pre-meiotic anther development: Cell fate specification and differentiation. Annual Review of Plant Biology, 2016, 67:365-395
[9] Begcy K, Dresselhaus T. Tracking maize pollen development by the leaf collar method. Plant Reproduction, 2017, 30(4):171-178
[10] Van Der Linde K, Walbot V. Pre-meiotic anther development. Current Topics in Developmental Biology, 2019, 131:239-256
[11] Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Current Topics in Developmental Biology, 2011, 62:437-460
[12]周雨露, 林泓, 张大兵, 王灿华, 余婧. 酮类物质合成酶OsPKS1和OsPKS2对水稻花粉外壁形成的作用. 中国农业科学, 2019, 52(8): 1295-1307Zhou Y L, Lin H, Zhang D B,Wang C H,Yu J. The function of the polyketide synthase OsPKS1 and OsPKS2 in regulating pollen wall formation in rice. Scientia Agricultura Sinica, 2019, 52(8):1295-1307
[13] Chaubal R, Anderson J R, Trimnell M R, Fox T W, Albertsen M C, Bedinger P. The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5):778-788
[14] Kelliher T, Walbot V. Hypoxia triggers meiotic fate acquisition in maize. Science, 2012, 337(6092):345-348
[15] Wang C J, Nan G L, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya I N, Harper L, Egger R, Walbot V, Cande W Z. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14):2594-2603
[16] Liu X Z, Zhang S W, Jiang Y L, Yan T W, Fang C W, Hou Q C, Wu S W, Xie K, An X L, Wan X Y. Use of CRISPR/Cas9-based gene editing to simultaneously mutate multiple homologous genes required for pollen development and male fertility in maize. Cells, 2022, 11(3):439
[17] Nan G L, Teng C, Fernandes J, O′connor L, Meyers B C, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. Plant Cell, 2022, 34(4):1207-1225
[18] Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1):163-172
[19] Moon J, Skibbe D, Timofejeva L, Wang C J, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant Journal, 2013, 76(4):592-602
[20] Albertsen M C, Fox T, Leonard A, Bailin L I, Loveland B, Trimnell M. Clone and use of the MS9 gene from Maize. Johnston IA US,Wilmington DE US:Pioneer Hi-Bred International, Inc.,E. I. Du Pont DE Nemours and Company, US-20180258445-A1,2018
[21] Shi J X, Cui M H, Yang L, Kim Y J, Zhang D B. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 2015, 20(11):741-753
[22] Zhang D B, Shi J X, Yang X J. Role of lipid metabolism in plant pollen exine development. Sub-cellular Biochemistry, 2016, 86:315-337
[23] Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theoretical and Applied Genetics, 2018, 131(6):1363-1378
[24] Zhu T T, Wu S W, Zhang D F, Li Z W, Xie K, An X L, Ma B, Hou Q C, Dong Z Y, Tian Y H, Li J P, Wan X Y. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theoretical and Applied Genetics, 2019, 132(7):2137-2154
[25] Li Z W, Liu S S, Zhu T T, An X L, Wei X, Zhang J, Wu S W, Dong Z Y, Long Y, Wan X Y. The loss-function of the male sterile gene ZmMs33/ZmGPAT6 results in severely oxidative stress and metabolic disorder in maize anthers. Cells, 2022, 11(15):2318
[26] Suzuki T, Narciso J O, Zeng W, Van De Meene A, Yasutomi M, Takemura S, Lampugnani E R, Doblin M S, Bacic A, Ishiguro S. KNS4/UPEX1: A type II arabinogalactan β-(1,3)- galactosyltransferase required for pollen exine development. Plant Physiology, 2017, 173(1):183-205
[27] Tian Y H, Xiao S L, Liu J, Somaratne Y, Zhang H, Wang M M, Zhang H R, Zhao L, Chen H B. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Scientific Reports, 2017, 7(1):1673-1676
[28] Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant Journal, 2017, 90(1):96-110
[29] An X L, Dong Z Y, Tian Y H, Xie k, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, Hou Q C,Bao J X, Zhang S M, Li Z W, Wang Y B, Yan T W, Sun X J, Zhang Y W, Li J P, Wn X Y. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybridbreeding in maize. Molecular Plant, 2019, 12(3):343-359
[30] Fox T, Debruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol Journal, 2017, 15(8):942-952
[31] Jiang Y L, Li Z W, Liu X Z, Zhu T T, Xie K, Hou Q C, Yan T W, Niu C F, Zhang S W, Yang M B, Xie R R, Wang J, Li J P, An X L, Wan X Y. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. International Journal of Molecular Sciences, 2021, 22(15):7916
[32] Xu Q L, Yang L, Kang D, Ren Z J, Liu Y J. Maize MS2 encodes an ATP-binding cassette transporter that is essential for anther development. The Crop Journal, 2021, 9(6):1301-1308
[33] Egger R L, Walbot V. A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Developmental Biology, 2016, 419(1):26-40
[34] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal, 2018, 16(2):459-471
[35] An X L, Ma B. Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu SW, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K. Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C. Li,J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proceedings of the National Academy of Sciences, 2020, 117(38):23499-23509
[36] Han Y J, Hu M J, Ma X X, Yan G,,Wang C Y, Jiang S Q, Lai J S, Zhang, M. Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize. Journal of Integrative Plant Biology, 2022, 64(7):1394-1410
PDF(2609 KB)

文章所在专题

玉米

92

Accesses

0

Citation

Detail

段落导航
相关文章

/