转录组测序解析超级稻淮稻5号灌浆速率快的机理

刘喜,王迪,高浩,王颖洁,王贵枝,王彦雁

植物遗传资源学报. 2023, 24(3): 854-863

PDF(1422 KB)
PDF(1422 KB)
植物遗传资源学报 ›› 2023, Vol. 24 ›› Issue (3) : 854-863. DOI: 10.13430/j.cnki.jpgr.20221018001
论文

转录组测序解析超级稻淮稻5号灌浆速率快的机理

  • 刘喜1,3,王迪2,高浩2,王颖洁3,王贵枝3,王彦雁3
作者信息 +

Deciphering the Functional Mechanism of Fast Grain Filling Rate in a Super Rice Huaidao 5 by Transcriptome Analysis

  • LIU Xi1,3, WANG Di2, GAO Hao2, WANG Ying-jie3, WANG Gui-zhi3, WANG Yan-yan3
Author information +
History +

摘要

灌浆速率是水稻重要而复杂的农艺性状之一,直接影响产量和品质。淮稻5号是由7208×武育粳3号杂交后代选育而成的粳稻优良品种,具有较高的灌浆速率,但其重要的分子特征尚不清楚。对淮稻5号和武育粳3号受精后14 d的种子提取RNA进行转录组分析。采用实时荧光定量PCR分析籽粒灌浆速率相关基因的表达水平,采用Sanger测序法分析淮稻5号和武育粳3号中已克隆的灌浆速率相关基因序列差异。在淮稻5号和武育粳3号之间检测到3230个上调基因和1171个下调基因。GO富集分析表明,这些基因主要参与淀粉和蔗糖生物合成、光合作用、碳同化、激素生物合成和信号转导途径。与武育粳3号相比,淮稻5号激活了较多参与淀粉和蔗糖生物合成的基因。共检测到63个激素相关差异表达基因,其中38个基因参与生长素途径,表明生长素在水稻籽粒灌浆过程中起着重要作用。一些已知的灌浆速率相关基因(GFR1OsPFP1OsPHO1;2、OsSWEET13、OsCIN2)在淮稻5号中显著上调。Sanger测序表明GFR1Huaidao5可能是控制灌浆速率的优异单倍型。

Abstract

Grain filling rate is an important and complex agronomic trait that directly affects rice yield and quality. Huaidao 5, a superior rice japonica variety, derived from the 7208 ×Wuyujing 3 cross, shows a high grain filling rate, whereas its functional mechanism remains unclear. A transcriptome analysis in Huaidao 5 and Wuyujing 3 was performed by harvesting 14-days-after-fertilization grains. Real time fluorescent quantitative PCR was used to analyze the transcripts of few candidate genes, and Sanger sequencing was applied to identify their polymorphisms between Huaidao 5 and Wuyujing 3. 3230 up-regulated and 1171 down-regulated genes were detected between Huaidao 5 and Wuyujing 3. Gene ontology analysis indicated that these differentially-expressed genes were primarily involved in starch and sucrose biosynthesis, photosynthesis, carbon assimilation, and hormone biosynthesis and signaling transduction pathway. If compared to Wuyujing 3, more genes involved in starch and sucrose biosynthesis were up-regulated in Huaidao 5. Sixty-three hormone-related differentially expressed genes were detected, of which 38 genes were involved in the auxin pathway, suggesting that auxin plays an important role in the rice grain filling process. Several identified grain-filling-rate-related genes (GFR1OsPFP1OsPHO1;2OsSWEET13OsCIN2) were significantly up-regulated in Huaidao 5. Moreover, Sanger sequencing showed that GFR1Huaidao5 might be an excellent haplotype to control the grain filling rate.

关键词

水稻(Oryza sativa L.) / 淮稻5号 / 转录组 / 灌浆速率 / GFR1

Key words

rice (Oryza sativa L.) / huaidao5 / transcriptome / grain filling rate / GFR1

引用本文

导出引用
刘喜,王迪,高浩,王颖洁,王贵枝,王彦雁. 转录组测序解析超级稻淮稻5号灌浆速率快的机理. 植物遗传资源学报. 2023, 24(3): 854-863 https://doi.org/10.13430/j.cnki.jpgr.20221018001
LIU Xi,WANG Di,GAO Hao,WANG Ying-jie,WANG Gui-zhi,WANG Yan-yan. Deciphering the Functional Mechanism of Fast Grain Filling Rate in a Super Rice Huaidao 5 by Transcriptome Analysis. Journal of Plant Genetic Resources. 2023, 24(3): 854-863 https://doi.org/10.13430/j.cnki.jpgr.20221018001

参考文献

[1] Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010, 61:421-442
[2] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z.Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40:1370-1374
[3] Zhao Y F, Peng T, Sun H Z, Teotia S, Wen H L, Du Y X, Zhang J, Li J Z, Tang G L, Xue H W, Zhao Q Z. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2019, 17:712-723
[4]陈孙禄, 詹成芳, 蒋红, 李琳涵, 张红生. 水稻籽粒灌浆速率的分子机制与遗传调控研究进展. 植物学报, 2021, 56:80-89Chen S L, Zhan C F, Jiang H, Li L H, Zhang H S. Advances in the molecular mechanism and genetic regulation of grain-filling rate in rice. Chinese Bulletin of Botany, 2021, 56:80-89
[5]贾小丽, 叶江华, 苗利国, 林红梅, 林文雄. 水稻籽粒灌浆速率的发育遗传机制研究. 热带作物学报, 2012, 33:622-626Jia X L, Ye J H, Miao L G, Lin H M, Lin W X. Developmental genetic mechanism research on grain-filling rate in rice. Chinese Journal of Tropical Crops, 2012, 33:622-626
[6] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann K A, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20:2130-2145
[7] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 2015, 47:1489-1493
[8] Yang J, Luo D, Yang B, Frommer W B, Eom J S. SWEET11 and 15 as key players in seed filling in rice. New Phytoloist, 2018, 218:604-615
[9] Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. Plant Science, 2021, 306:110851
[10] Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany, 2021, 72:2947-2964
[11] Ma B, Zhang L, Gao Q, Wang J, Li X, Wang H, Liu Y, Lin H, Liu J, Wang X, Li Q, Deng Y, Tang W, Luan S, He Z. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics, 2021, 53:906-915
[12] Liu E, Zeng S, Zhu S, Liu Y, Wu G, Zhao K, Liu X, Liu Q, Dong Z, Dang X, Xie H, Li D, Hu X, Hong D. Favorable alleles of GRAIN-FILLING RATE1 increase the grain-filling rate and yield of rice. Plant Physiology, 2019, 181:1207-1222
[13] Kong W, Sun T, Zhang C, Deng X, Li Y. Comparative transcriptome analysis reveals the mechanisms underlying differences in salt tolerance between indica and japonica rice at seedling stage. Frontiers in Plant Science, 2021, 12:725436
[14] Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic analysis of gene expression in rice superior and inferior grains by RNA-Seq. PLoS ONE, 2015, 10:e0137168
[15] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28:511-515
[16]孔飞. 水稻dull突变体w54的基因图位克隆和温度敏感型黄叶突变体yl2(t)的表型分析与基因定位.南京: 南京农业大学, 2016Kong F. Gene map-based cloning of a rice dull mutant w54 and phenotypic analysis and gene mapping of a thermo-sensitive yellow leaf mutant yl2(t). Nanjing: Nanjing Agricultural University, 2016
[17] Shaw B P, Sekhar S, Panda B B, Sahu G, Chandra T, Parida A K. Biochemical and molecular processes contributing to grain filling and yield in rice. Plant Physiology and Biochemistry, 2022, 179:120-133
[18] Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion Plant Biology, 2012, 15:92-96
[19] Wang G Q, Li H X, Feng L, Chen M X, Meng S, Ye N H, Zhang J.Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany, 2019, 70:1597-1611
[20]叶菀,齐智伟,李晓静,饶玉春.各种植物激素对水稻籽粒灌浆的影响及其机制.安徽农业科学, 2013, 41:9-11Ye W, Qi Z W, Li X J, Rao Y C. Influence and mechanism of each kind of plant hormones on rice grain filling. Journal of Anhui Agricultural Science, 2013, 41:9-11
[21] Hu L, Tu B, Yang W, Yuan H, Li J, Guo L, Zheng L, Chen W, Zhu X, Wang Y, Qin P, Ma B, Li S. Mitochondria-associated pyruvate kinase complexes regulate grain filling in rice. Plant Physiology, 2020, 183:1073-1087
[22] Kretzschmar T, Pelayo M A, Trijatmiko K R, Gabunada L F, Alam R, Jimenez R, Mendioro M S, Slamet-Loedin I H, Sreenivasulu N, Bailey-Serres J, Ismail A M, Mackill D J, Septiningsih E M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1:15124
[23]高振楠,郝媛媛,李春寿,黄福灯,赵向前,田志宏.水稻调控淀粉合成基因的研究进展.植物遗传资源学报, 2023, 24(1):61-74Gao Z N, Hao Y Y, Li C S, Huang F D, Zhao X Q, Tian Z H.Study on genes regulating starch synthesis in rice. Journal of Plant Genetic Resources, 2023, 24(1):61-74
[24] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature, 2009, 459:1071-1078
[25] Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion Plant Biology, 2012, 15:92-96
[26] Blázquez M A, Nelson D C, Weijers D. Evolution of plant hormone response pathways. Annual Review of Plant Biology, 2020, 71:327-353
[27] Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 2009, 47:195-204
[28] Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany, 2011, 62:3907-3916
[29] Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLE RING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012, 24:2562-2577
[30] Khew C Y, Teo C J, Chan W S, Wong H L, Namasivayam P, Ho C L. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. Journal of Plant Physiology, 2015, 182:23-32
[31] Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant, 2018, 11:736-749
[32] Qiao J, Jiang H, Lin Y, Shang L, Wang M, Li D, Fu X, Geisler M, Qi Y, Gao Z, Qian Q. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 2021, 14:1683-1698
PDF(1422 KB)

文章所在专题

水稻

60

Accesses

0

Citation

Detail

段落导航
相关文章

/